Libbarrett  1.2.4
include/barrett/math/detail/spline-inl.h
00001 /*
00002         Copyright 2009, 2010, 2011, 2012 Barrett Technology <support@barrett.com>
00003 
00004         This file is part of libbarrett.
00005 
00006         This version of libbarrett is free software: you can redistribute it
00007         and/or modify it under the terms of the GNU General Public License as
00008         published by the Free Software Foundation, either version 3 of the
00009         License, or (at your option) any later version.
00010 
00011         This version of libbarrett is distributed in the hope that it will be
00012         useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
00013         MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00014         GNU General Public License for more details.
00015 
00016         You should have received a copy of the GNU General Public License along
00017         with this version of libbarrett.  If not, see
00018         <http://www.gnu.org/licenses/>.
00019 
00020         Further, non-binding information about licensing is available at:
00021         <http://wiki.barrett.com/libbarrett/wiki/LicenseNotes>
00022 */
00023 
00024 /*
00025  * spline-inl.h
00026  *
00027  *  Created on: Dec 22, 2009
00028  *      Author: dc
00029  */
00030 
00031 
00032 #include <iostream>
00033 #include <cassert>
00034 
00035 #include <gsl/gsl_interp.h>
00036 
00037 #include <barrett/math/utils.h>
00038 #include <barrett/cdlbt/spline.h>
00039 
00040 
00041 namespace barrett {
00042 namespace math {
00043 
00044 
00045 template<typename T>
00046 template<template<typename, typename> class Container, typename Allocator>
00047 Spline<T>::Spline(const Container<tuple_type, Allocator>& samples, bool saturateS) :
00048         impl(NULL), sat(saturateS), s_0(0.0), s_f(0.0)
00049 {
00050         s_0 = boost::get<0>(samples[0]);
00051 
00052         bt_spline_create(&impl, boost::get<1>(samples[0]).asGslType(), BT_SPLINE_MODE_EXTERNAL);
00053 
00054         typename Container<tuple_type, Allocator>::const_iterator i;
00055         for (i = ++(samples.begin()); i != samples.end(); ++i) {  // start with the 2nd sample
00056                 bt_spline_add(impl, boost::get<1>(*i).asGslType(), boost::get<0>(*i) - s_0);
00057         }
00058 
00059         bt_spline_init(impl, NULL, NULL);
00060         s_f = s_0 + changeInS();
00061 }
00062 
00063 template<typename T>
00064 template<template<typename, typename> class Container, typename Allocator>
00065 Spline<T>::Spline(const Container<T, Allocator>& points, /*const typename T::unitless_type& initialDirection,*/ bool saturateS) :
00066         impl(NULL), sat(saturateS), s_0(0.0), s_f(0.0)
00067 {
00068         bt_spline_create(&impl, points[0].asGslType(), BT_SPLINE_MODE_ARCLEN);
00069 
00070         typename Container<T, Allocator>::const_iterator i;
00071         for (i = ++(points.begin()); i != points.end(); ++i) {  // start with the 2nd sample
00072                 bt_spline_add(impl, (*i).asGslType(), 0);
00073         }
00074 
00075         /*
00076         // local copy because init modifies its 3rd parameter
00077         typename T::unitless_type id(initialDirection);
00078         bt_spline_init(impl, NULL, id.asGslType());
00079         */
00080         bt_spline_init(impl, NULL, NULL);
00081 
00082         s_f = s_0 + changeInS();
00083 }
00084 
00085 template<typename T>
00086 Spline<T>::~Spline()
00087 {
00088         bt_spline_destroy(impl);
00089         impl = NULL;
00090 }
00091 
00092 template<typename T>
00093 inline double Spline<T>::changeInS() const
00094 {
00095         return impl->length;
00096 }
00097 
00098 template<typename T>
00099 inline T Spline<T>::eval(double s) const
00100 {
00101         if (sat) {
00102                 s = saturate(s, s_0, s_f);
00103         }
00104 
00105         T result;
00106         bt_spline_get(impl, result.asGslType(), s - s_0);
00107         return result;
00108 }
00109 
00110 template<typename T>
00111 inline T Spline<T>::evalDerivative(double s) const
00112 {
00113         if (sat) {
00114                 s = saturate(s, s_0, s_f);
00115         }
00116 
00117         T result;
00118         for (int i = 0; i < impl->dimension; ++i) {
00119                 result[i] = gsl_interp_eval_deriv(impl->interps[i], impl->ss, impl->points[i], s - s_0, impl->acc);
00120         }
00121         return result;
00122 }
00123 
00124 
00125 // Specialization for Eigen::Quaternion  types
00126 template<typename Scalar>
00127 template<template<typename, typename> class Container, typename Allocator>
00128 Spline<Eigen::Quaternion<Scalar> >::Spline(const Container<tuple_type, Allocator>& samples, bool saturateS) :
00129         data(samples.begin(), samples.end()), sat(saturateS), index(0), rate(-1.0)
00130 {
00131         // Make sure s is monotonic.
00132         for (size_t i = 0; i < data.size() - 1; ++i) {
00133                 assert(boost::get<0>(data[i]) < boost::get<0>(data[i+1]));
00134         }
00135 }
00136 
00137 template<typename Scalar>
00138 template<template<typename, typename> class Container, typename Allocator>
00139 Spline<Eigen::Quaternion<Scalar> >::Spline(const Container<data_type, Allocator>& points, bool saturateS) :
00140         data(points.size()), sat(saturateS), index(0), rate(-1.0)
00141 {
00142         double s = 0.0;
00143         for (size_t i = 0; i < data.size(); ++i) {
00144                 if (i > 0) {
00145                         double ad = points.at(i).angularDistance(points.at(i-1));
00146                         assert(ad >= 0.0);
00147 
00148                         // If the points are too close together, enforce an artificial
00149                         // minimum distance. This keeps division by delta-s under control.
00150                         s += math::max(ad, 1e-4);
00151                 }
00152 
00153                 boost::get<0>(data[i]) = s;
00154                 boost::get<1>(data[i]) = points.at(i);
00155         }
00156 
00157         // Make sure s is monotonic.
00158         for (size_t i = 0; i < data.size() - 1; ++i) {
00159                 assert(boost::get<0>(data[i]) < boost::get<0>(data[i+1]));
00160         }
00161 }
00162 
00163 template<typename Scalar>
00164 typename Spline<Eigen::Quaternion<Scalar> >::data_type Spline<Eigen::Quaternion<Scalar> >::eval(double s) const
00165 {
00166         s = saturate(s, initialS(), finalS());
00167 
00168         while (index > 0  &&  s < boost::get<0>(data[index])) {
00169                 --index;
00170                 rate = -1.0;
00171         }
00172         while (index < data.size()-1  &&  s >= boost::get<0>(data[index+1])) {
00173                 ++index;
00174                 rate = -1.0;
00175         }
00176         assert(index < data.size());
00177 
00178         if (index == data.size()-1) {
00179                 return boost::get<1>(data[index]);
00180         } else {
00181                 if (rate < 0.0) {
00182                         rate = 1.0 / (boost::get<0>(data[index+1]) - boost::get<0>(data[index]));
00183                 }
00184 
00185                 return boost::get<1>(data[index]).slerp(rate * (s - boost::get<0>(data[index])), boost::get<1>(data[index+1]));
00186         }
00187 }
00188 
00189 
00190 }
00191 }
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Defines