
BarrettWraptor™
BH8-600 Series User Manual

Firmware Version 1.0

 2

1 System Description

1.1 Introduction
Thank you for choosing the BarrettWraptor™. The BarrettWraptor ™ is designed to overcome the inflexibility of
conventional industrial grippers with DSP-enabled dexterity while maintaining durability, compactness, and ease of use. The
BarrettWraptor ™ is a multi-fingered Wraptor™ with the dexterity to secure target objects of different sizes, shapes, and
orientations. Rather than rely on pinching gripper friction or permanent gripper-jaw shape customization the BarrettWraptor
™ gently envelops the object, securely locking its joints until commanded to release.

System integration with any robotic arm is fast and simple. Even with its low, 6.9-kg, weight and compact form, it is totally
self-contained. The BarrettWraptor ™ uses industry-standard serial communications, which is the common denominator of
communications, for guaranteed universal compatibility. CAN communications and Ethernet are available, optionally.
While the bandwidth of serial communications may limit less intelligent equipment, the eight (8) on-board DSPs combined
with Barrett’s open Grasper Control Language (GCL) endows the BarrettWraptor ™ with millisecond response.

The compactness and low weight of the BarrettWraptor ™ assures that the enhanced dexterity does not compromise arm
payload. Its low mass and short base-to-grasp-center distance minimize joint loading on the host robot and reduce extraneous
arm movements during object reorientation. The custom control-electronics package is contained entirely within the
Wraptor™, reducing electrical wiring to a single cable carrying all communications and motor power.

We hope that you enjoy the versatility and functionality of the BarrettWraptor ™. Please never hesitate to give feedback and
to ask for advice as needed. US+617-252-9000, <service@barrett.com>, or <http://www.barrett.com/robot/>.

1.2 About the BarrettWraptor
The BarrettWraptor ™ has three fingers identified as F1, F2 and F3. Two of the fingers, F1 & F2, rotate synchronously and
symmetrically about the base joint in a spreading action. The “spread” motion around the palm allows “on-the-fly” grasp
reconfiguration to adapt to varying target object sizes, shapes, and orientations.

Aside from the spread motion, each of the three fingers on the BarrettWraptor ™ feature two joints driven by separate DC
brushless servo motors. When the inner joint contacts an object, the outer joint continues to close around it, making a secure
grasp. Using the fingers together allows the BarrettWraptor ™ to "grasp" a wide variety of objects securely. The multi-
jointed fingers, combined with the spread function, make object grasping nearly target-independent.

Two sets of four LEDs are mounted in the base of the Wraptor. The blue LED indicates 24V power. The green LED
indicates 3.3V logic power. The yellow LED is lit when the spread motion is free. When the yellow LED is dark, the spread
is locked by the brake spread brake. The red LED is a software LED, but it is inactive with the Ethernet model of the
Wraptor.

M1

M2
M3

M4

M5

M6
M7

F1

F2
F3

 3

1.3 Technical Specifications
1.3.1 Overview
 Dimensions: 131h x 640w x 192d (mm)
 Mass: 6.9kg
 Voltage requirements: 24V
 Current requirements: Min 10A, Max 30A
 Load limits: 50kg / finger
 Speed limits (joint extremes): Outer link = 1.0s
 Inner link = 0.72s
 Spread = 0.88s
 Operating temperature limits: 0 to 70 degrees C
 Storage temperature limits: -25 to 95 degrees C
 Environmentally sealed: IP-65

Table 1 - Joint Ranges

 Link Spread Tip
Min -1375 0 -8690 GCL Counts Max 18590 9130 19250
Min -25 0 -158 Hall Counts Max 338 166 350
Min -10 0 -78

Degrees Max 133 180 180

1.3.2 Conversion ratios

The Wraptor operates using hall counts much more imprecise than the GCL specification. Therefore, the physical
counts have been scaled to reflect values similar to those in the GCL. When using the GCL, all commands are in the “GCL

 4

Counts” unit. The following is the conversion ratios needed to convert between units and the joint ranges of each motor in all
of the different units.

Table 2 – Conversion Ratios

Ratio Value
GCL Count : Hall Count 55:1
Hall Count : Motor Revolution 18:1
Motor Revolution : Link Revolution 49:1
Motor Revolution : Spread Revolution 18.28:1
Motor Revolution : Tip Revolution 39:1

Example Calculation (Determine the GCL value needed to move link by 90º):

GCLCounts
hallCount
GCLCount

vmotor
hallCount

vlink
vmotorvlink 12128

1
55

Re1
18

Re1
Re49

º360
Re1º90 =
































1.3.3 Brushless Motors
The BarrettWraptor ™ utilizes one of the smallest DC brushless servo motors in the world for their torque range. Because
the motors have no brushes, and thus less inherent friction, they achieve a better torque/mass ratio than typical brushed
servos. There is also no need to replace worn brushes after the motors have been in service over a period of time. The
following table shows BarrettWraptor ™ motor properties.

BarrettWraptor™ Motor Properties

Number of Phases 3
Number of Poles 6
Rotor Magnets Highest-Grade Neodymium Rare-Earth
Commutation 6-step Brushless Electronic PWM
Peak Torque 65 N-cm (92 oz-in)
Motor Constant 4.2 N-

W
cm (5.916

W
inoz −)

Position Feedback 18 counts/rev., Hall effect sensor

1.4 Theory of Operation (Ethernet Model)
The host PC connects and communicates to the Wraptor using Ethernet. A device server inside the Wraptor converts
command packets between Ethernet and RS-232 serial (at 38kbaud) to communicate with the GOD (General Operations
Device) controller in the base of the Wraptor. If the GOD controller receives an ASCII string command, it interprets the
command, compiles it into a valid CAN packet, then places it on the internal CAN (Controller Area Network) bus to be
delivered to the motor controllers (Taters). If GOD receives a pre-compiled command packet, it simply places it on the CAN
bus.

When GOD receives a CAN packet from a Tater which is addressed to the host PC, it sends the data to the device server via
RS-232 serial. If GOD’s communication reply mode is set to zero, it translates the data into human-readable text. If it is set
to one, it keeps the data in packet-form. The device server then routes the data back to the host PC via Ethernet.

1.5 Control Software
The BH8-600 Series System control software consists of:
1. Firmware (*.tek software), and
2. Example programs.

 5

Included with the software in electronic form are:
1. BH8-600 Series User Manual (this manual)

The BarrettWraptor ™ has firmware that resides on the control electronics inside the palm. Depending on the configuration
purchased, you can control the Wraptor™ in one of three ways:
1. RS-232 Serial Communication: Simple, ASCII-based commands are sent over the serial port and interpreted by the

Wraptor™, or faster, pre-compiled commands are sent to the Wraptor™ using the C-Function Library.
2. Ethernet Communication: Simple, ASCII-based commands are sent over an Ethernet network and interpreted by the

Wraptor™, or faster, pre-compiled commands are sent to the Wraptor™ using the C-Function Library.
CAN Communication: High-speed, pre-compiled commands are sent directly to the motors of the Wraptor™, eliminating
the need for an interpreter and allowing absolute control of each motor by using the C-Function Library.

1.6 C-Function Library
The BarrettWraptor ™ C-Function Library is a helpful tool for programming the BarrettWraptor ™ using the C language on
IBM-compatible PC’s without having to manage the issues of communication and timing of multi-axis motion control. The
library contains easy-to-use functions that streamline the development of custom motion control routines by the end user. All
of the functions are available when the library is linked to the program.

The C-Function Library is written in C and compiled for Windows 95/98/NT/2k. The library uses a multithreaded
mechanism for communications, allowing commands to be issued and responses received simultaneously. The library also
manages all input and output buffers and makes it easy to manipulate the BarrettWraptor ™ from a custom control
application.

1.7 Control Software/Firmware Upgrades
Barrett Technology makes software and firmware upgrades periodically. Upgrades are available for purchase or free of
charge for customers of Barrett's subscription service. Refer to Barrett's enclosed Warranty and Subscription Service Policy
for more information.

 6

2 Safety and Cautions
PLEASE READ THIS SECTION IN ITS ENTIRETY BEFORE USING YOUR BARRETTWRAPTOR™.

Following these safety instructions will help prevent user injury and equipment damage.
• As with any piece of robotic equipment, it is ultimately up to you to be aware of your surroundings during robot

operation. The workspace of the system comprising the BarrettWraptor ™ and robot arm should be clearly marked to
prevent persons or objects from inadvertently entering the equipment’s reach. Before attaching the BarrettWraptor ™,
test host robot trajectories to confirm that it will not inadvertently collide with other objects in the workspace.

• NEVER connect or disconnect any electrical cables while the Power Supply is turned on. Failure to follow this

instruction could impart irreparable damage to the onboard electronics or put you at risk of electrical shock.

• Always make sure the BarrettWraptor ™ is properly grounded. Failure to do so could damage the BarrettWraptor ™

electronics and put you at risk of electrical shock.

• Do not place any part of your body or delicate objects within the grasp of the BarrettWraptor ™ without first verifying

control of the unit and confirming appropriate force levels.

• Do not allow the BarrettWraptor ™ to be exposed to corrosive liquids that may cause damage to the body or cable of the

unit.

• Do not exceed the load limit of the fingers, 50kg per finger. Consider all loading situations including accelerated loads,

cantilever loads from long objects, robot collisions, active loads, etc.

• Monitor the operating temperature of the BarrettWraptor ™ so that it does not exceed 70C. Under normal conditions,

the Wraptor™ operates between 35 and 60C. The BarrettWraptor ™ was designed with non-backdrivable finger joints
to take advantage of the motors’ peak operating performance in short bursts. The spread, however, is backdrivable to aid
in target-independent grasping and requires constant motor current to actively hold position. Idling the spread motor
(thus activating the spread brake), when possible, will help keep the temperature lower.

 7

3 Initial Setup and Walk-through
1) Mount the Wraptor securely to a robot arm or test stand.
2) Supply the Wraptor with 24V (red wires) and Gnd (black wires).
3) Plug the Wraptor into an Ethernet network.
4) Launch the “DS Manager” utility, select “DS Settings”.
5) Enter a free IP address on your Ethernet subnet. Save your changes and exit the DS Manager.
6) Launch the GrasperTest application.
7) Type “WAKE” to wake up the Wraptor.
 Note: All commands must be followed by pressing <Enter>.
 Note: All commands are case-insensitive and all whitespace is optional.
8) Get the initial temperature of the inner joint motors: Type “123 G TEMP”
 Note: “123 G TEMP” is read as “Motors 1, 2, and 3, Get your TEMPerature”
 Note: The Wraptor should return with its inner joint temperatures, in tenths of a degree C.
10) Move the fingers to position 100: Type “M”, Type “123”, Type “100” (three separate entries, <Enter> after each)
11) Move the spread (motor 4) to its mid-position: Type “4 S E 82”, Type “4 S M 5”
 Note: “4 S E 82” is read as “Motor 4, Set your End position to 82”
 Note: “4 S M 5” is read as “Motor 4, Set your Control Mode to 5”

Note: The Control Modes are described in detail later, but 0 = Idle, 3 = PID, 5 = Trapezoidal Move. You may
notice the Wraptor responding with “x MODE=3” messages (where ‘x’ is the motor controller number).
When a motor completes a trapezoidal move, it signals the host with the information that it has
automatically switched its own control mode from trapezoidal (mode 5) to PID (mode 3), and is now
holding its end position.

12) Close finger 1: Type “C”, Type “1”
13) Open finger 1: Type “O”, Type “1”
14) Close the spread: Type “4 S E 164”, Type “4 S M 5”
15) Close the Wraptor fingers: Type “C”, Type “123”
16) Get the final temperature of the inner joint motors: Type “123 G TEMP”
17) Save the present positions for shutting down: Type “SAVE”
18) Remove power from the Wraptor.

 8

4 Control Modes – Supervisory and RealTime
The BarrettWraptor ™ can be used in either of two (2) modes:

1. high-level Supervisory mode or
2. low-level RealTime mode.

Most users of the BarrettWraptor ™ can rely exclusively on Supervisory mode since it handles virtually every function of the
BarrettWraptor ™. Supervisory mode leverages the GOD microprocessor onboard the Hand. This processor interprets
incoming Supervisory Commands and then applies control signals across the set of seven (7) motion-control
microprocessors. Supervisory mode allows you to command individual or multiple motors to close, open, and move to
specific positions; it also provides for setting the various configuration parameters and reporting positions and torques.

At the simplest level, Supervisory mode allows you to type and receive ASCII text characters on a terminal (using any type
of computer hardware or operating system, such as UNIX, Macintosh, PalmPilot, and proprietary robot controllers, etc.). To
automate grasping applications, you can write programs, scripts, or macros that send and receive these text characters through
the serial port (e.g. the optional BarrettWraptor™ C-Function Library).

RealTime mode extends the capability of Supervisory mode. Sometimes users may wish to bypass the Supervisory functions
and apply control directly to the motion-control microprocessors. RealTime mode enables users to close control loops in real
time from their host PC or robot controller. This benefits users interested in real-time control via a data-glove, PhanTom,
visual-servoing applications, real-time force control (via optional strain-gage sensors), etc. Users can switch between
Supervisory and RealTime modes on-the-fly as desired, allowing for mixed mode operation.

 9

5 Supervisory Control Mode
5.1 Overview

5.1.1 Commands
When the BarrettWraptor ™ firmware is ready to process a command, it prints a prompt of "=> " to your host computer. A
command can then be entered as a single line, terminated by a carriage return character (0x0d). Once the firmware receives
the carriage return, it processes the line, executes the command, prints any error result, and then prints a new prompt. Once a
command has been started, no configuration changes can be made until the command has completed or has been aborted.

Many of the commands take one or more parameters; space characters should separate these from the command and each
other. The command syntax is:

 [X]<motorPrefixes><command> [<Arguments>]

5.1.2 Motor commands
Motor commands refer to one or more of the seven motors. By default, all seven motors are affected and the Wraptor will
simulate the BarrettHand’s functionality. To select fewer than seven motors, a motor prefix must be placed before the
command (with no space between the prefix and the command).

Placing the optional X in front of the motor prefixes specifies that the motors listed will be exclusively acted upon. All
simulation to mimic the BH-262 will be turned off, so the fingers will not move in sync, and breakaways become irrelevant.
The motor prefixes and the resulting motors selected are:

Table 3 - Motor Prefixes

Value Motor if no X is present Motor if X is present
1 Finger 1 (motors 1 and 5) 1
2 Finger 2 (motors 2 and 6) 2
3 Finger 3 (motors 3 and 7) 3
4 Spread (motor 4) Spread (motor 4)
5 Invalid prefix 5
6 Invalid prefix 6
7 Invalid prefix 7
G Finger 1, Finger 2, Finger 3 Finger 1, Finger 2, Finger 3
S Spread (motor 4) Spread (motor 4)
<No Motor Specified> Any motors with the parameter

EN set to 1
No motor selected

Examples:
 "12<command>" executes the given command on fingers 1 and 2
 "X35<command>" executes the given command on motors 3 and 5

5.1.3 Status Codes
When a Supervisory mode command encounters an error or unexpected result, the command is terminated, a status code is
printed, and then a new prompt is printed to the host PC. The status code is in the format "ERR <value>", where <value> is
the sum of the status codes encountered. Note that the status codes are powers of 2 so that the sum may be decomposed into
the individual status codes.

 10

Table 4 - Hand Status Codes

Hand Status Code Description
1 No motor board found
2 No motor found
4 Motor not initialized
8 (not used)

16 Couldn't reach position
32 Unknown command
64 Unknown parameter name

128 Invalid value
256 Tried to write a read only parameter
512 (not used)

1024 Too many arguments for this command
2048 Invalid RealTime control block header
4096 Command can't have motor prefix
8192 Overtemperature fault tripped
16384 Cntl-C abort command received

5.2 Command List
Supervisory mode commands are organized into the following siz (6) categories:
• Movement
• Motor parameter
• Global parameter
• Sequence and Macro
• Administrative
• Advanced

5.2.1 Movement Commands
Movement commands are motor commands: they immediately affect one or more of the motors. Each can take motor
prefixes.

Command: C
Name: Close
Purpose: Commands the selected motor(s) to move fingers in close direction with a velocity ramp-down at target

limit. If selected, each finger moves towards the palm, and the spread motor moves so that fingers F1 and
F2 are adjacent to finger F3.

Arguments: (none)
Example: SC
Notes: The C command is similar to a MOVE command, with the value of the Close Target (CT) motor parameter

as the destination. However, unlike the Move command, the C command will not return an ERR16 if it
does not reach CT within the maximum position error (MPE) parameter.

Command: HI
Name: Hand Initialize
Purpose: Initializes the selected motor controller(s), preparing them for use by other movement commands.
Arguments: (none)
Example: HI
Notes: HI must be run before any other movement command. Generally it is run without a motor prefix,

initializing all four motors; although, if desired, a subset of the motors can be specified. After an HI, all
motors are in their home position; at 0 encoder counts.

 11

Command: HOME
Name: Home
Purpose: Moves the selected motor(s) to position 0.
Arguments: (none)
Example: SGHOME
Notes:

Command: IO
Name: Incremental Open
Purpose: Opens the selected motor(s) the given number of counts. If no is specified argument, then opens by the

value of parameter DS.
Arguments: Distance to move (0 to 20000) (optional)
Example: 12IO 5000
Notes:

Command: IC
Name: Incremental Close
Purpose: Closes the selected motor(s) the given number of counts. If no is specified argument, then the affected

motor(s) closes by the value(s) of parameter DS.
Arguments: Distance to move (0 to 20000) (optional)
Example: GIC 5000
Notes:

Command: LOOP
Name: Loop
Purpose: Enters RealTime mode.
Arguments: (none)
Example: LOOP
Notes: See Section 6 for more information on RealTime mode.

Command: M
Name: Move
Purpose: Moves the selected motor(s) to the given position. If no argument specified, then the motor(s) move(s) to

the position given by parameter DP.
Arguments: Position (0 to 20000) (optional)
Example: 13M 1000
Notes:

Command: MDEG
Name: Move to Degree
Purpose: Moves the selected motor(s) to the given position expressed in degrees. If no is argument specified, then

the motor(s) move(s) to the position given by DP.
Arguments: Position in degrees (optional and can be negative)
Example: 13MDEG 90
Notes: A position of 0º is flat on a finger motor and completely open for the spread. Larger degrees signify a

closing motor, smaller degrees signify an opening motor.

Command: MPER
Name: Move to Percent
Purpose: Moves the selected motor(s) to the given position expressed in percent of CT. If no argument is specified,

then the motor(s) move(s) to the position given by DP.
Arguments: Position in percent (optional and can be negative)
Example: 13MPER 50
Notes: A position of 0% is flat on a finger motor and completely open for the spread. A position of 100% is at the

position given by CT for all motors.

 12

Command: O
Name: Open
Purpose: Commands the selected motor(s) to move fingers in open direction with a velocity ramp-down at target

limits. If selected, F1, F2, and F3 open away from the palm, and the spread motor moves so that fingers F1
and F2 are opposite finger F3.

Arguments: (none)
Example: GO
Notes: The O command is similar to a MOVE command, with the value of the OT motor parameter as the

destination. However, unlike the Move command, the O command will not return an ERR32 if it does not
reach OT within the maximum position error (MPE) parameter. This command will reset the breakaway
detected flag, BD.

Command: PTM
Name: Parallel Tip Move
Purpose: Moves the selected tips in synchronization by an incremental amount so that if they are parallel, they stay

parallel for the duration of the move. If no argument is specified, then the affected motor(s) move by the
value of DS.

Arguments: Distance to move (-20000 to 20000) (optional)
Example: X567PTM -5000
Notes: A positive increment will close motor 7 and a negative increment will open it. If the spread is open, the

other tips will move the opposite direction as motor 7. If the spread is closed, the other tips will move the
same direction as motor 7.

Command: T
Name: Terminate power
Purpose: Turns the selected motor(s)'s power off.
Arguments: (none)
Example: ST
Notes: Although T will return an "ERR 4" if any of the selected motor(s) isn't initialized; it will still turn the

selected and initialized motor(s)'s power off.

Command: TC
Name: Torque-Controlled Close
Purpose: Commands velocity of selected motor(s) in the direction that closes the finger(s) with control of motor

torque at stall.
Arguments: (none)
Example: STC
Notes:

Command: TO
Name: Torque-Controlled Open
Purpose: Commands velocity of selected motor(s) in the direction that opens the finger(s) with control of motor

torque at stall.
Arguments: (none)
Example: STO
Notes:

Command: WM
Name: Wiper Move
Purpose: Moves the selected finger(s) such that the tips remain in the same orientation with respect to the observer.

If no argument specified, then the finger(s) move to the position given by DP.
Arguments: Position (optional)
Example: 12WM 12000
Notes: The position entered is the position that the link in the finger will finish at.

5.2.2 Motor parameter commands
Motor parameter commands act on the configuration parameters for one or more of the motors. All except FLIST can take
motor prefixes. See section 5.3 for a complete list of motor parameters.

 13

Command: FSET
Name: Finger Set
Purpose: Sets the given parameter to the given value for the selected motor(s)
Arguments: <parameterName> <parameterValue>
Example: SFSET DS 100
Notes:

Command: FGET
Name: Finger Get
Purpose: Gets and prints the given parameter's value for the selected motor(s). Each parameter prints one value for

each selected motor separated by spaces.
Arguments: <parameterName>
Example: SFGET DS
Notes:

Command: FLOAD
Name: Finger Load
Purpose: Loads the selected motor(s)'s parameters from non-volatile storage. This is done whenever the firmware

starts up.
Arguments: (none)
Example: 3FLOAD
Notes: The non-volatile storage used does not depend on the super capacitor, so it retains its value even if the

firmware is lost.

Command: FSAVE
Name: Finger Save
Purpose: Saves the selected motor(s)'s parameters to non-volatile storage.
Arguments: (none)
Example: 123FSAVE
Notes: The non-volatile storage used does not depend on the super capacitor, so it retains its value even if the

firmware is lost. However, this command should not be performed more than 5,000 times or the Hand
electronics may need repair.

Command: FDEF
Name: Finger Default
Purpose: Sets the selected motor(s)'s parameters back to their factory default values.
Arguments: (none)
Example: SFDEF
Notes: Does not save the changed values to non-volatile storage.

Command: FLIST
Name: Finger List
Purpose: Lists all of the standard motor parameters and their descriptions.
Arguments: (none)
Example: FLIST
Notes: Does not take a motor prefix.

Command: FLISTV
Name: Finger List Value
Purpose: Lists the motor-parameter values for the selected motor(s). Each parameter has its value(s) printed on one

line, with one value for each selected motor separated by spaces.
Arguments: (none)
Example: 3FLISTV
Notes:

 14

5.2.3 Global parameter commands
Global parameter commands configure the hand as a whole, without referencing a particular finger or motor. Except for not
taking a motor prefix they are identical to the set of motor parameter commands. See section 5.4 for a complete list of global
parameters.

Command: PSET
Name: Parameter Set
Purpose: Sets the given parameter to the given value
Arguments: <parameterName> <parameterValue>
Example: PSET OTEMP 60
Notes:

Command: PGET
Name: Parameter Get
Purpose: Gets and prints the given parameter's value.
Arguments: <parameterName>
Example: PGET TEMP
Notes:

Command: PLOAD
Name: Parameter Load
Purpose: Loads the global parameters from non-volatile storage. This is done whenever the firmware starts up.
Arguments: (none)
Example: PLOAD
Notes: The non-volatile storage used does not depend on the super capacitor, so it retains its value even if the

firmware is lost.

Command: PSAVE
Name: Parameter Save
Purpose: Saves the global parameters to non-volatile storage.
Arguments: (none)
Example: PSAVE
Notes: The non-volatile storage used does not depend on the super capacitor, so it retains its value even if the

firmware is lost. However, this command should not be performed more than 5,000 times or the Hand
electronics may need repair.

Command: PDEF
Name: Parameter Default
Purpose: Sets the writable global parameters to their default values.
Arguments: (none)
Example: PDEF
Notes: Does not save the changed values to non-volatile storage.

Command: PLIST
Name: Parameter List
Purpose: Lists all of the standard global parameters and their descriptions.
Arguments: (none)
Example: PLIST
Notes:

Command: PLISTV
Name: Parameter List Value
Purpose: Lists all of the standard global parameters' values. Each parameter has its value(s) printed on one line.
Arguments: (none)
Example: PLISTV
Notes:

 15

5.2.4 Sequence and macro commands
Sequence and macro commands manipulate the playing and recording of sequences and macros. Sequences and macros are
automatically stored in non-volatile memory so they will survive power downs and firmware updates. A macro stores/recalls
the position of every motor. The system holds a maximum of 20 macros. A sequence consists of a series of supervisory
commands that are played/recorded. The system holds a maximum of 6 sequences, each of which is a maximum of 150
characters including spaces and carriage returns. Embedded sequences are not allowed, so if you are recording sequence 3, a
call to play sequence 1 will not be recorded. Only the MAC command can take motor prefixes

Command: MAC
Name: Macro
Purpose: Moves the selected motor(s) to the position specified in the macro.
Arguments: Macro number (0-19)
Example: GMAC 3
Notes: The system only holds 20 macros. This command can take motor prefixes.

Command: MACSET
Name: Macro set
Purpose: Saves the current position of the motors as a macro.
Arguments: Macro number (0-19)
Example: MACSET 3
Notes: The system only holds 20 macros.

Command: REC
Name: Record
Purpose: Start/Stop the recording of a sequence.
Arguments: Sequence number (if starting) (0-5)
Example: REC
Notes: The System only holds 6 sequences. Embedded sequences are not allowed. When recording, each

command sent to the hand is recorded in the sequence to be replayed later. If the sequence does not have
enough free space left to record a command, the recording is stopped. If a sequence previously existed in a
slot, it is erased as soon as recording starts in that slot.

Command: PLAY
Name: Play
Purpose: Plays a previously recorded sequence
Arguments: Sequence number (0-5)
Example: PLAY
Notes: The system only holds 6 sequences. Embedded sequences are not allowed.

Command: WAIT
Name: Wait
Purpose: Causes the system to wait a given number of milliseconds
Arguments: Milliseconds to wait
Example: WAIT 5000
Notes: This command is useful in sequences.

5.2.5 Administrative commands
Administrative commands implement various housekeeping functions.

Command: ?
Name: Help
Purpose: Lists all of the standard commands. If immediately followed by a command name, then it lists the

command name and its description.
Arguments: <commandName>
Example: ?HI
Notes: There must be no space between "?" and any command name.

 16

Command: RESET
Name: Reset
Purpose: Resets the hand software. Equivalent to doing a power cycle.
Arguments: (none)
Example: RESET
Notes:

Command: ERR
Name: Error
Purpose: If given an argument, lists the errors represented by that argument. If not given an argument, lists all

possible error values and descriptions.
Arguments: <errorNum>
Example: ERR 3
Notes:

Command: VERS
Name: Version
Purpose: Prints the firmware version.
Arguments: (none)
Example: VERS
Notes:

5.2.6 Advanced commands
Users do not generally need these commands and should avoid using them. They are not listed by the “?" command; they are
only listed by the "A?" command.

Command: A?
Name: Help All
Purpose: Lists all of the standard and advanced commands.
Arguments: (none)
Example: A?
Notes: Use the ? command to get a description of an advanced command.

Command: FLISTA
Name: Finger List All
Purpose: Lists all of the standard and advanced finger parameter names.
Arguments: (none)
Example: FLISTA
Notes:

Command: FLISTAV
Name: Finger List All Value
Purpose: Lists all of the standard and advanced motor parameter's values for the selected motor(s). Each parameter

has its value(s) printed on one line, with one value for each selected motor separated by spaces.
Arguments: (none)
Example: 3FLISTAV
Notes: Can take a motor prefix.

Command: PLISTA
Name: Parameter List All
Purpose: Lists all of the standard and advanced global parameter names.
Arguments: (none)
Example: PLISTA
Notes:

 17

Command: PLISTAV
Name: Parameter List All Value
Purpose: Lists all of the standard and advanced global parameter's values. Each parameter has its value printed on

one line.
Arguments: (none)
Example: PLISTAV
Notes:

5.3 Motor Parameters

Motor parameters change how a motor functions.

5.3.1 Movement
Movement parameters affect how a given motor moves.

Parameter: BS
Name: Breakaway Stop
Purpose: Used to stop finger as soon as breakaway has been detected.
Values: 0 or 1
Default: Link: 0
 Spread: N/A
 Tip: 0
Notes: When set to 1, the finger’s motors will stop when breakaway is detected. Breakaways only occur when

BarrettHand functionality is being simulated (i.e. no “X” motor prefix).

Parameter: DP
Name: Default Position
Purpose: Destination of M command if no argument specified
Values: -32,767 to 32,767
Default: Link: 8500
 Spread: 1575
 Tip: 8500
Notes: While DP has a range from -32,767 to 32,767, its true range of useful values is bounded by the joint limits

of the axes (e.g. approx. -1400 to 18,500 for link, approx. 0 to 9000 for spread and approx. –8700 to 19000
for tip).

Parameter: DS
Name: Default Step
Purpose: Size of IC or IO command movement if no argument specified
Values: -32,767 to 32,767
Default: Link: 1400
 Spread: 800
 Tip: 1400
Notes: While DS has a range from -32,767 to 32,767, its true range of useful values is bounded by the joint limits

of the axes (e.g. approx. -1400 to 18,500 for link, approx. 0 to 9000 for spread and approx. –8700 to 19000
for tip).

Parameter: HSG
Name: Highest Strain Gauge Value
Purpose: In O, C, IO, IC, M, TO, TC, and HOME commands, a motor's motion is terminated if its strain gauge value

exceeds HSG.
Values: 0 to 256
Default: 256
Notes: This command is an alias for MSG. When writing new code, it is recommended to use this command

instead of MSG. A value of 255 or 256 disables the strain gage checking during motion commands.

 18

Parameter: LSG
Name: Lowest Strain Gauge Value
Purpose: In O, C, IO, IC, M, TO, TC, and HOME commands, a motor's motion is terminated if its strain gauge value

falls below LSG.
Values: 0 to 256
Default: 256
Notes: A value of 255 or 256 disables the strain gage checking during motion commands.

Parameter: MOV
Name: Maximum Open Velocity
Purpose: Controls the maximum velocity while opening a motor.
Values: 16 to 4080
Default: 1000
Notes:

Parameter: MCV
Name: Maximum Close Velocity
Purpose: Controls the maximum velocity while closing a motor.
Values: 16 to 4080
Default: 1000
Notes:

Parameter: MSG
Name: Maximum Strain Gauge
Purpose: In O, C, IO, IC, M, TO, TC, and HOME commands, a motor's motion is terminated if its strain gauge value

exceeds MSG.
Values: 0 to 256
Default: 256
Notes: HSG is the preferred alias to MSG. When possible, please use HSG in place of MSG. A value of 255 or

256 disables the strain gage checking during motion commands.

5.3.2 Status
Motor status parameters are read-only and give information about the state of a motor.

Parameter: BD
Name: Breakaway-Detected Flag
Purpose: To determine if breakaway has occurred
Values: 0 or 1
Default: N/A
Notes: Flag is set when a breakaway is detected.

Parameter: BP
Name: Breakaway Position
Purpose: Stores position of last breakaway
Values: 0 or 20000
Default: N/A
Notes: Stored position of location of last breakaway.

Parameter: OD
Name: Odometer
Purpose: The total number of counts traveled by the selected motor, divided by 1000.
Values: 0 to 4 billion
Default: N/A
Notes: This value is never reset; it is maintained through power failures and firmware downloads.

 19

Parameter: P
Name: Position
Purpose: The present position of the motor.
Values: Link: -1400 to approximately 18500

Spread: 0 to approximately 9100
Tip: -8700 to approximately 19000

Default: N/A
Notes:

Parameter: S
Name: Status
Purpose: The present status of the motor. 0 if ready to be used, or a status code otherwise.
Values: 0, 1, 2, 4,…8192, 16384 and sums of these
Default: N/A
Notes: See status codes in section 5.1.3.

Parameter: SG
Name: Strain Gauge
Purpose: The present strain gage value for the motor.
Values: 0 to 255
Default: N/A
Notes:

5.3.3 RealTime
RealTime parameters affect the control and feedback data for a motor while in RealTime mode. See Section 6 for more
information on RealTime mode.

Parameter: LCV
Name: Loop Control Velocity
Purpose: If non-zero, then a velocity byte will be sent in the control block for the motor.
Values: 0, 1
Default: 1
Notes:

Parameter: LCVC
Name: Loop Control Velocity Coefficient
Purpose: When the firmware receives a velocity byte in a control block, it multiplies the value by the value of LCVC

before passing it to the affected motor.
Values: 0 to 255
Default: 8
Notes:

Parameter: LCPG
Name: Loop Control Proportional Gain
Purpose: If non-zero, then a Proportional Gain byte will be sent in the control block for the motor.
Values: 0, 1
Default: 1
Notes: This controls the constant that is multiplied by the velocity error in order to produce the motor torque.

Parameter: LFV
Name: Loop Feedback Velocity
Purpose: If non-zero, then the firmware sends a signed byte giving the present velocity for the motor divided by the

LFVC parameter.
Values: 0, 1
Default: 1
Notes:

 20

Parameter: LFVC
Name: Loop Feedback Velocity Coefficient
Purpose: Before sending a Loop Feedback Velocity byte, the firmware divides the velocity by this parameter's value.
Values: 0 to 255
Default: 8
Notes:

Parameter: LFS
Name: Loop Feedback Strain
Purpose: If non-zero, then the firmware sends an unsigned byte giving the strain gauge value for the motor.
Values: 0, 1
Default: 1
Notes:

Parameter: LFAP
Name: Loop Feedback Absolute Position
Purpose: If non-zero, then the firmware sends an unsigned two-byte value giving the present position of the motor.
Values: 0, 1
Default: 1
Notes:

Parameter: LFDP
Name: Loop Feedback Delta Position
Purpose: If non-zero, then the firmware sends a signed byte giving the change in position since the last datum,

divided by the value of the LFDPC parameter.
Values: 0, 1
Default: 1
Notes: A conflict occurs when the change in position is too great to transmit in a single signed byte, even after

scaling. See section 6.2.3 for more information.

Parameter: LFDPC
Name: Loop Feedback Delta Position Coefficient
Purpose: Used to scale a delta position value.
Values: 0 to 255
Default: 1
Notes: Delta position is the change in position from the last reported position and is limited to one signed byte.

The Present position is read and compared to the last reported position. The difference is divided by the
RealTime variable LFDPC, clipped to a single signed byte, and then sent to the host. The value sent to the
host should be multiplied by LFDPC and then added to the last reported position

5.3.4 Advanced
Users do not generally need these commands and should avoid using them. They are not listed by the FLIST or FLISTV
commands; they are only listed by the FLISTA and FLISTAV commands.

Parameter: ACCEL
Name: Acceleration
Purpose: Maximum acceleration and deceleration when moving from one position to another.
Values: 0 to 65,535
Default: Link: 40

Spread: 30
Tip: 30

Notes: While the ACCEL parameter has a rather large range of values that it can accept, the motor can only follow
a small subset of those values. In general, the useful range is from 0 to approx. 60. Above 60, the motors
cannot provide enough torque to accelerate that quickly. The units for acceleration is defined as
1024*sqrt(Hall count)/ms

 21

Parameter: CT
Name: Close Target
Purpose: This is the position gone to by a C (“Close”) command.
Values: -32,767 to 32,767
Default: Link: 18,200
 Spread: 9300
 Tip: 18,200
Notes: While CT has a range from -32,767 to 32,767, its true range of useful values is bounded by the joint limits

of the axes (e.g. approx. -1400 to 18,500 for link, approx. 0 to 9000 for spread and approx. –8700 to 19000
for tip).

Parameter: EN
Name: Enabled
Purpose: If non-zero, then a motion command with no motor prefix will act on this motor.
Values: 0, 1
Default: 1
Notes:

Parameter: HOLD
Name: Hold
Purpose: If non-zero, then the motor is left energized after each motion command in order to hold the position

constant.
Values: 0, 1
Default: Link: 0
 Spread: 1
 Tip: 0
Notes: Since the fingers are not back-drivable, this is generally set to 1 only for the spread motor.

Parameter: MPE
Name: Maximum Position Error
Purpose: After moving to a desired position, if the position error is less than MPE then the move is considered a

success.
Values: -32,767 to 32,767
Default: 200
Notes: While MPE has a range from -32,767 to 32,767, its true range of useful values is bounded by the joint

limits of the axes (e.g. approx. -1400 to 18,500 for link, approx. 0 to 9000 for spread and approx. –8700 to
19000 for tip).

Parameter: OT
Name: Open Target
Purpose: This is the position gone to by an O (“Open”) command.
Values: -32,767 to 32,767
Default: 0
Notes: While OT has a range from -32,767 to 32,767, its true range of useful values is bounded by the joint limits

of the axes (e.g. approx. -1400 to 18,500 for link, approx. 0 to 9000 for spread and approx. –8700 to 19000
for tip).

Parameter: SAMPLE
Name: Sample Time
Purpose: Controls the sample frequency of the motor controller chip.
Values: 31
Default: 31
Notes: Read only value.

 22

Parameter: TSTOP
Name: Time to Stop
Purpose: Time in milliseconds before motor is considered stopped.
Values: 0 to 65,535
Default: Link: 300
 Spread: 400
 Tip: 300
Notes: WARNING: Please use caution when adjusting this parameter. Setting TSTOP higher than its default can result in
the motors heating up very quickly under moderate to heavy usage.

5.4 Global Parameters

Global parameters are used to configure or observe the hand as a whole.

5.4.1 Configuration
Global configuration parameters affect the hand as a whole.

Parameter: BAUD
Name: Baud rate
Purpose: Controls the serial port baud rate. Value is baud rate divided by 100.
Values: 6, 12, 24, 48, 96, 192, 384.
Default: 96
Notes:

Parameter: LFT
Name: Loop Feedback Temperature
Purpose: If non-zero, then when in RealTime mode the firmware sends a signed two-byte datum of temperature in

each feedback block.
Values: 0, 1
Default: 0
Notes:

Parameter: OTEMP
Name: OverTemperature
Purpose: If not -551, then if the temperature exceeds this value then any motor command fails with an

overtemperature error.
Values: -551 to 1250
Default: -551
Notes: Value is temperature in tenths of a degrees C.

5.4.2 Status
Global status parameters are read-only and give information about the state of the hand.

Parameter: TEMP
Name: Temperature
Purpose: The present temperature on the CPU board in tenths of a degree C.
Values: -550 to 1250
Default: N/A
Notes:

Parameter: PTEMP
Name: Peak Temperature
Purpose: The maximum temperature ever experienced by this hand
Values: 0 to 1250
Default: N/A
Notes: This value is never reset; it is maintained through power failures and firmware downloads.

 23

Parameter: UPSECS
Name: Uptime Seconds
Purpose: The total power-up time for this hand.
Values: 0 to 4 billion
Default: N/A
Notes: This value is never reset; it is maintained through power failures and firmware downloads. The parameter

can accommodate 136 years of power-up time before rolling over.

Parameter: SN
Name: Serial Number
Purpose: The serial number of the hand.
Values: N/A
Default: N/A
Notes: This value is never reset; it is maintained through power failures and firmware downloads.

5.4.3 Advanced

Parameter: LFDPD
Name: Loop Feedback Delta Position Discard
Purpose: If non-zero, then in RealTime mode any position change that cannot be sent in a delta position datum is

discarded. If zero, then any unsent position change is accumulated for transmission in the next cycle.
Values: 0, 1
Default: 0
Notes:

5.5 Termination Conditions for Movement Commands
There are twelve commands in Supervisory mode that control finger motion:

• Position commands, absolute: M, MDEG, MPER, HOME, WM
• Position commands, relative: IO, IC, PTM.
• Velocity commands with ramp-down at target limits: O, C
• Velocity commands with control of motor torque at stall: TO, TC

In all cases, the command terminates and returns when, for every motor specified in the command, one of the following
termination conditions applies:

Case 1: Motor stalls because obstacle(s) stop the motion. The obstacles include foreign objects as well as joint stops and
other fingers.

• When a motor stalls, the controller will continue driving it for TSTOP milliseconds, after which a termination
condition occurs.

• If HOLD is false, the motor is then turned off; if HOLD is true, the motor is servoed to maintain this position.
• For position commands, if the termination position is not within MPE (Maximum Position Error), the status code

ERR16 is returned corresponding to “Couldn’t reach position.”

Case 2: Specified goal position is achieved within MPE.
• As soon as the goal position is reached, a termination condition occurs for that motor.
• If HOLD is false, the motor is then turned off; if HOLD is true, the motor is servoed to maintain the position at

which the termination condition occurred.
• No status code is returned, and a query to parameter S returns 0.

Case 3: Control-C Character Sent

• As soon as the Control C is received, a termination condition occurs for all motors.
• For each motor, if HOLD is false, that motor is then turned off; if HOLD is true, that motor is servoed to maintain

the position at which the termination condition occurred.
• The status code returned is 16384.

 24

6 RealTime Control
6.1 Overview

RealTime mode, also known as Loop-Control mode, is the second control method for the BarrettWraptor. This control mode
allows you to send control data continuously and receive feedback data, without waiting for the motors to stop moving. Any
desired control law can be implemented within the host computer by calculating the desired motor command, sending that
command to the BarrettWraptor, waiting for the requested feedback data, and then calculating the next motor command. The
control bandwidth is a function of the amount of control data sent, the amount of feedback data requested and the chosen
baud rate.

Control data from the host computer to the hand is grouped into control blocks; feedback data from the BarrettWraptor ™ is
grouped into feedback blocks. The structure of the control and feedback blocks is set by various finger and global parameters.
The structure can only be changed in Supervisory mode; it cannot be changed while in RealTime mode.

While in RealTime mode, the firmware keeps track of the present and desired velocities. It calculates the motor torque by
multiplying the velocity error by the proportional gain value.

To enter RealTime mode, the host computer sends the Supervisory mode "LOOP" command, specifying the motors to be
controlled. The Hand responds with an acknowledgment character ("*"), and then awaits control blocks, with or without
control data. When a control block is received, if the control block requests a feedback block, then transmission of the
feedback block is started. Once the complete control block is received it is acted upon, and then the hand waits for the next
control block. The host should not send a second control block until the first one is acknowledged.

If the Hand software encounters an error, then the next time the Hand would send an “*” character to the host it instead sends
"<CRLF>ERR" followed by the error value. It then returns to Supervisory mode.

To terminate RealTime mode, the host should send a single ^C character instead of the header character. This returns the
Hand to Supervisory mode.

6.2 Control and Feedback Blocks

Control and feedback blocks consist of a header character, followed if desired by control data. If control data is included then
it is sent for each motor selected for the LOOP command, in motor number order, followed by any global datum. For each
motor, any of a set of data can be included. Whether or not a specific piece of data should be included is controlled by one of
seven flag parameters: "LCV", "LCPG", "LFV", "LFS", "LFAP", "LFDP" and "LFT." If a given parameter is true then its
corresponding datum is included in the block; if not, then it is omitted. (Three other parameters, "LFVC", "LFDPC", and
"LFDPD", modify specific data items.)

6.2.1 Control Blocks

Control data from the host to the hand is grouped into control blocks. Each control block has a single byte header, optionally
followed by a set of control data. The header specifies whether or not control data is to follow, and whether or not a feedback
block is to be returned. The header can also terminate RealTime mode.

The possible header byte values are:

"C": Control data follows; respond with a feedback block

"c": Control data follows; respond with an acknowledgment character

"A": No control data follows; respond with a feedback block

"a": No control data follows; respond with an acknowledgment character

<^C>: Terminate RealTime mode

 25

If the "C" or "c" header is used, then the header should be followed by control data. For each motor, two different data values
should be included in order if their corresponding flags are true:

LCV ("Loop Control Velocity"): 1 signed byte

LCPG ("Loop Control Proportional Gain"): 1 unsigned byte

The control data should be sent in a specific order: first all data for motor 1, then all for motor 2, then motor 3, then motor 4,
then motor 5, then motor 6 and finally motor 7. Note that if a given motor was not specified in the initiating LOOP command,
or if a specific value isn't enabled by the corresponding finger parameter, then the corresponding datum should not be
transmitted.

If the LCV datum is included, then the hand will multiply it by the parameter LCVC before passing it on to the motor.

6.2.2 Feedback Blocks

Data from the hand to the host is grouped into feedback blocks. Each feedback block has a single byte header ("*"), followed
(if requested) by a set of feedback data. If the hand has encountered an error, then the header is replaced by "<CRLF>ERR ",
followed by the error number; the hand then returns to supervisory command mode.

For each selected motor, four different data values are included in order if their corresponding finger parameters are non-
zero:

LFV ("Loop Feedback Velocity"): 1 signed byte

LFS ("Loop Feedback Strain"): 1 unsigned byte

LFAP ("Loop Feedback Absolute Position"): Signed 4-byte word

LFDP ("Loop Feedback Delta Potion"): 1 signed byte

In addition to the motor feedback data, there is a single global feedback datum, which is sent if its corresponding global
parameter is non-zero:

LFT ("Loop Feedback Temperature"): Signed 2-byte word

The feedback data are sent in a specific order: first all data for motor 1, then all for motor 2, then motor 3, then motor 4, then
motor 5, then motor 6, then motor 7, and finally any global datum. Note that if a given motor was not specified in the
initiating LOOP command, or if a specific value isn't enabled by the corresponding finger or global parameter, then the
corresponding datum is not transmitted.

If the LFV datum is included, then the hand will divide it by the parameter Loop LFVC before sending it to the host.

6.2.3 Loop Feedback Delta Position

The LFDP ("Loop Feedback Delta Position") datum is a special case. Each time a motor's position is queried using "FGET
P", the reported position is remembered. In loop mode, if the LFDP parameter is non-zero then the present position is read
and compared to the previously reported position. The difference is divided by the LFDPC ("Loop Feedback Delta Position
Coefficient") parameter, clipped to a single signed byte, and then sent to the host. The host should then multiply the received
value by LFDPC and then add it to the reported position.

The problem with using delta position is that the reported position can change at most by +127/-128 in each cycle. If the
motor position changes more than this in a single cycle then the reported position will lag behind the actual position.

Example: say LFDPC is 2, the last reported position was 1500, and the position suddenly jumps to 2000. The first feedback
block will include the delta position datum 127, which actually means 254; the hand will internally update the reported
position to 1754. The next feedback block will include the delta position 123, which actually means 246; the reported

 26

position will be updated to 2000. Subsequent feedback blocks will include the delta position value 0 (until the next position
change).

If desired, any unreported position change can be discarded by setting the LFDPD ("Loop Feedback Delta Position
Discarded") global parameter to true. With this set, the above example would result in the single value 127 being sent to the
host, followed by 0s.

6.3 Parameter Summary
This is a summary of the different motor and global parameters, which affect RealTime mode. Most of the parameters are
flags, specifying whether a specific datum is to be present in a control or feedback block. The four remaining parameters are
coefficients or flags, which affect how the firmware interprets or generates a datum.

Table 5 - RealTime Finger Control Parameters

Parameter Name Type Function Size in Block
LCV Loop Control

Velocity
Flag If True, RealTime control

block will contain control
velocity

1 signed byte

LCVC Loop Control
Velocity
Coefficient

Coefficient
(1 to 255)

LCV is multiplied by LCVC
to determine control velocity

N/A

LCPG Loop Control
Proportional Gain

Flag If True, RealTime control
block will contain
Proportional Gain

1 unsigned
byte

LFV Loop Feedback
Velocity

Flag If True, RealTime feedback
block will contain feedback
velocity

1 signed byte

LFVC Loop Feedback
Velocity
Coefficient

Coefficient
(1 to 255)

Actual velocity is divided by
LFVC to get LFV

N/A

LFS Loop Feedback
Strain

Flag If True, RealTime feedback
block will contain strain
information

1 unsigned
byte

LFAP Loop Feedback
Absolute Position

Flag If True, RealTime feedback
block will contain absolute
position

4 signed bytes

LFDP Loop Feedback
Delta Position

Flag If True, RealTime feedback
block will contain delta
position

1 signed byte

LFDPC Loop Feedback
Delta Position
Coefficient

Coefficient
(1 to 255)

The actual delta position is
divided by this to get LFDP

N/A

LFDPD Loop Feedback
Delta Position
Discard

Flag If true, any delta position
overflow is discarded

N/A

Table 6 - RealTime Global Control Parameters

Parameter Name Type Function Size in Block
LFT Loop

Feedback
Temp.

Flag If True, RealTime
feedback block will
contain temperature

2 signed bytes

 27

6.4 Example

This application uses fingers 1 and 2, and the spread. The fingers will receive velocity control information and report strain
and delta position. The spread will just report delta position. The feedback block will also include the present hand
temperature. All relevant coefficients will be set to 1.

To set this, use the following commands:

12FSET LCV 1
12FSET LCVC 1
12FSET LCPG 0
12FSET LFV 0
12FSET LFS 1
12FSET LFAP 0
12FSET LFDP 1
12FSET LFDPC 1
4FSET LCV 0
4FSET LCPG 0
4FSET LFV 0
4FSET LFS 0
4FSET LFAP 0
4FSET LFDP 1
4FSET LFDPC 1
PSET LFT 1
124LOOP

The hand will then send a single "*" and wait for control blocks. Each control block will consist of three bytes:

"C" [Control data follows; respond with feedback block]

1 signed byte of velocity for motor 1

1 signed byte of velocity for motor 2

Each feedback block will consist of eight bytes:

"*"

1 unsigned byte of strain for motor 1

1 signed byte of delta position for motor 1

1 unsigned byte of strain for motor 2

1 signed byte of delta position for motor 2

1 signed byte of delta position for motor 4

2-signed bytes of temperature

Each control block from the host will stimulate a feedback block from the hand. When the host is finished, it will send the
single character ^C (0x03); the hand will respond by printing a prompt and waiting for a new command.

 28

7 C Function Reference

close
Syntax: void close(SOCKET g, const char *nodes);
Arguments: g: socket returned by tcp_connect(),
 nodes: null-terminated string of integers specifying fingers
Example: /* Close fingers 1 and 3 */
 close(g, “13”);
Notes: Actually issues a move() command for the fingers specified, plus their fingertips. Automatically calculates

a corresponding end position for the fingertip motor.

command
Syntax: void command(SOCKET g, char *message);
Arguments: g: socket returned by tcp_connect()
 message: null-terminated command string to send to Wraptor
Example: /* Set motor 7’s Max Torque Limit to 550 */
 command(g, “7 S MT 550”);
Notes: If the command sets any motor to Trapezoidal Mode, the function will wait until those motors complete

their movement.

delay
Syntax: void delay(DWORD ms);
Arguments: ms: number of milliseconds to delay execution
Example: /* Wait for 2.5 seconds */
 delay(2500);
Notes: While the code is delayed, incoming messages from the Wraptor are still received and processed.

discoverGrasper
Syntax: int discoverGrasper(char mac[], char ipaddress[], int *port);
Arguments: mac: Returned MAC address of the found Wraptor
 ipaddress: Returned IP address of the found Wraptor
 port: Returned port number of the found Wraptor
Example: /* Find the Wraptor on the network */
 int port;
 char mac[127], ipaddress[127];
 discoverGrasper(mac, ipaddress, &port);
Notes: The present implementation allows for only one Wraptor on each network. The function uses a UDP

broadcast to locate the Wraptor.

downloadFirmware
Syntax: int downloadFirmware(SOCKET g, const char *nodes, char *fname);
Arguments: g: socket returned by tcp_connect()
 nodes: null-terminated string of integers specifying motor controllers
 fname: pathname of the firmware (*.tek) file to be downloaded
Example: /* Download new firmware */
 char fname[127], nodes[16];
 printf("Load Firmware: ");
 gets(fname);
 printf("To which nodes: ");
 gets(nodes);
 downloadFirmware(g, nodes, fname);
Notes: The function shows the percent downloaded on-screen. Barrett strongly recommends downloading to only

one node (motor controller) at a time to avoid firmware corruption. Download time is approximately 10
minutes. The motor controllers are put into their “download firmware” state by cycling power, or by
setting their STATUS property to zero.

 29

findZero
Syntax: void findZero(SOCKET g, const char *nodes);
Arguments: g: socket returned by tcp_connect()
 nodes: null-terminated string of integers specifying motor controllers
Example: /* Find the zero-point on all motors */
 findZero(g, “1234567”);
Notes: The function first tries to open motors 1, 2, and 3 to their stops. Then it opens motor 4 (spread) while

closing the fingertips (5, 6, and 7). It then resets the ActualPositions to known values and moves all joints
to a position of zero. Make sure the Wraptor’s workspace is clear of obstructions before calling this
function.

get
Syntax: void get(SOCKET g, const char *nodes, int property);
Arguments: g: socket returned by tcp_connect()
 nodes: null-terminated string of integers specifying motor controllers
 property: integer index of the property to be retrieved
Example: /* Get the temperature of motor controllers 5, 6, and 7 */
 get(g, “567”, MOTOR_TEMPERATURE);
Notes: The retrieved property values are placed into the propertyList[][] array. The function waits until all motors

have responded with their value.

initSoftware
Syntax: void initSoftware(void);
Arguments: none
Example: /* Initialize the local Wraptor property arrays to zero */
 initSoftware();
Notes: Must be called before communicating with the Wraptor.

Listener
Syntax: DWORD WINAPI Listener(void *g);
Arguments: g: socket returned by tcp_connect()
Example: /* Launch the TCP Listener */
 DWORD nThreadID;
 CreateThread(0, 0, Listener, (void*)g, 0, &nThreadID);
Notes: The Listener thread runs in an endless loop listening for packets sent by the Wraptor then processing them.

move
Syntax: void move(SOCKET g, const char *nodes, long value);
Arguments: g: socket returned by tcp_connect()
 nodes: null-terminated string of integers specifying fingers
 value: position to move to (in hall counts)
Example: /* Move fingers 1 and 2 to position 250 */
 move(g, “12”, 250);
Notes: Automatically calculates a corresponding end position for the fingertip motor.

open
Syntax: void open(SOCKET g, const char *nodes);
Arguments: g: socket returned by tcp_connect(),
 nodes: null-terminated string of integers specifying fingers
Example: /* Open fingers 1 and 3 */
 open(g, “13”);
Notes: Actually issues a move() to position zero command for the fingers specified, plus their fingertips.

Automatically calculates a corresponding end position for the fingertip motor.

 30

saveParameters
Syntax: void saveParameters(SOCKET g, const char *nodes);
Arguments: g: socket returned by tcp_connect(),
 nodes: null-terminated string of integers specifying motor controllers (or GOD)
Example: /* Save the Wraptor parameters, prepare for power-off */
 saveParameters(g, “1234567”);
Notes: Should be issued while each motor control is in Control Mode MODE_IDLE, before removing power from

the Wraptor, in order to save the present motor positions and control parameters.

set
Syntax: void set(SOCKET g, const char *nodes, int property, long value);
Arguments: g: socket returned by tcp_connect()
 nodes: null-terminated string of integers specifying motor controllers
 property: integer index of the property to be set
 value: value to set the property to
Example: /* Set the trapezoidal end position of motors 5, 6, and 7 to -85 */
 set(g, “567”, TRAP_END_POSITION, -85);
Notes: none

tcp_connect
Syntax: SOCKET tcp_connect(const char *hostname, unsigned short portnum);
Arguments: hostname: hostname or IP address of Wraptor
 portnum: port number for communication (typically 1001)
Example: /* Establish a TCP socket connection to the Wraptor */
 if((g = tcp_connect(ipaddress, port)) == -1){
 printf("\nError: Can not connect to Wraptor!");
 exit(-1);
 }
Notes: See the GrasperTest main.c example program.

tcp_msg
Syntax: SOCKET tcp_msg(SOCKET sd, const char *buff, int len);
Arguments: sd: socket returned by tcp_connect()
 buff: (unterminated) string buffer of characters to send to Wraptor
 len: number of characters to send from buff
Example: /* Send a character string to the Wraptor */
 tcp_msg(g, “1 G AP”, 6);
Notes: Issues a raw stream of characters to the Wraptor.

waitFor
Syntax: void waitFor(SOCKET g, const char *nodes, int property, long value);
Arguments: g: socket returned by tcp_connect()
 nodes: null-terminated string of integers specifying motor controllers
 property: integer index of the property to be set
 value: value to set the property to
Example: /* Wait for the Control Mode to be MODE_PID */
 waitFor(g, “567”, CONTROL_MODE, MODE_PID);
Notes: Waits in a loop until the propertyList[][] entry for all specified motors matches the given value.

 31

wakeGrasper
Syntax: void wakeGrasper(SOCKET g);
Arguments: g: socket returned by tcp_connect()
Example: /* Prepare the Wraptor for initial commands */
 wakeGrasper(g);
Notes: When the Wraptor is first powered-up (or when STATUS is set to zero), all motor controllers (and GOD)

are in a “Wait for firmware update” state- they will not respond to motion commands properly. Calling this
function gets the motor controllers into a “Ready” state. NOTE: If you are updating firmware, you must
not call this command before downloadFirmware(), else the download will fail.

ws_down
Syntax: int ws_down();
Arguments: none
Example: /* Shut down WinSock, break communication with Wraptor */
 ws_down();
Notes: Call this at the end of your program.

ws_init
Syntax: int ws_init();
Arguments: none
Example: /* Start up WinSock */
 ws_init();
Notes: Call this at the beginning of your program.

 32

8 Kinematics
 Homogeneous Transform Between {i-1} and {i}
 D-H Parameter Values for all Fingers
 Forward Kinematics from Fingertip to World
 D-H Frame Assignment (image)
 D-H Link Parameters for Fingers
 Forward Kinematics for Finger
 Motor to Joint Angle Transform

9 Maintenance
 The BarrettWraptor is designed to be maintenance-free.

10 Troubleshooting
 Symptom / Possible solution
 This section will be expanded as common problems are determined.

11 FAQ
 This section will be expanded as questions arise.

