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1 Introduction

This document briefly describes a method for gravity compensation applicable to any rigid-
body robotic manipulator in an open kinematic chain (i.e. only one connection to ground).



This method is designed to operate on the Barrett WAMT™  an advanced torque-controlled
robot.

The method consists of two steps. First, in the calibration step, the robot is made
to hold a number of distinct poses, while torque measurements at each of the joints are
taken. From these torque measurements, a vector p is determined for each link j, using
a linear regression. This vector p;, the cumulative first moment of the mass, has units of
{mass - length}, and represents the sum of link j’s mass moment and the mass moments of
all subsequent links. Expressed in joint coordinates, the vectors p; are pose-independent.

Once the i vectors for the robot’s mass configuration are determined, it is simple to derive
the necessary torques for each joint, starting from the last link and recursively moving to
the first one. Thus, in the compensation scheme, torques can be provided to each joint to
gravity-compensate the robot, relative to whatever mass configuration was calibrated.

For this step, it is assumed that the robot is capable of maintaining a fixed position; for
this purpose, the WAM™uses a set of simple PID controllers in joint-space.

2 Newton-Euler Formulation

2.1 Conventions

We will use the following conventions in this document, which are based on the Denavit-
Hartenberg conventions.

The robot is made up of n moving rigid links, numbered 57 = 1,2,...n. Rigidly attached
to the end of each link is an origin frame, where the 2z axis of frame j is the axis of rotation
for the joint between link j and link 5 + 1. The world frame is labeled frame 0, and for now,
it is assumed that frame 0 is an inertial frame.

m; = the mass of link j

rm; = the location of the joint’s point of rotation
Tej = the location of the center of mass

¢’ = the gravity vector in frame j

fi = the force from link j — 1 to link j

fi+1 = the force from link j to link j +1

75 = the torque from link 7 — 1 to link j
Tj41 = the torque from link j to link j +1

ac; = the COM acceleration in frame j

o = the COM ang acceleration in frame j
wj = the COM ang velocity in frame j

FJ = an arbitrary external force in frame j
T = an arbitrary external torque in frame j




2.2 Generic Equations
From Spong, pp 276-277, we have the following equations of motion for a rigid link:
fi = Ri1fi +myg’ + F/ = mjal; (1)

7 = RIF + i X (reg = rmg) — (Rlaifin) X 1+ T9 = Ly +w; x ([wy)  (2)

Note that a number of terms have been adjusted from Spong to fit into the Denavit-
Hartenberg conventions.

2.3 The Static Case

Next, we make the assumption that (a) there are no external forces or torques (F' and T are
zero) and (b) the system is static (a, o, and w are zero). This leaves us with:

fi=—m;g’ + R fim (3)
T — R§+17—j+1 = —f; X (rej — Tmj) + <R§+1fj+1) X T (4)

First, we note that, for the last link j = n, both f;4; and 7,4, are zero. Thus:
fn = _mngn (5)

Then, by substitution, we have:

foct = —maag" T R (—mng”) (6)
— _mn—lgnil o mngnfl (7)
= —(my_1 +my) g"! (8)

Thus, we find an explicit expression for the force f; on each link:
fi=— jgj for Mj:ka 9)
k=j

(of course, this seems obvious in retrospect, but it’s nice to derive it explicitly as well ...)
Next, we turn to the torque equation.

T — R§+17?j+1 = - (_Mj gj) X (Tej = Tmj) + (Rj:ﬂ (_Mj“ ng)) X Tej (10)
= ¢ X (Mj[re; = rmj]) = ¢ x (Mjsa7ej) (11)
= ¢ x (Mjre; — Mjrm; — Mji1re) (12)
= g] X (mjrcj_Mijj) (13)
Thus, we arrive at the following static governing equation:
7 —RI T = ¢ x py for pj=mjre — My, (14)



3 Calibration - Coupled Matrix

3.1 Denavit-Hartenberg Representation

Next, we take advantage of our Denavit-Hartenberg frame formulation to write each torque:

‘ Q; 0 —as Q9
’7_'3 = R;'—l bj and [C_I:]X = as 0 —aq (].5)
T —a9 aq 0
9 @j41 |
RIy | b | = | b | =[¢] (16)
7j Tj+1

3.2 Matrix Formulation - Single Link j

Next, we get things in matrix language so we can design a matrix solution. We make a
couple of useful definitions to separate the rotation matrix for multiplication with known
and unknown quantities:

10 0 w
L=]0 1| and Z=|0 andcj:[bj'] (17)
0 0 1 I
R?_lLCj + R,g_lZTj — LC]'_|_1 — ZTj+1 == {gj:|>< |: s } (18)
R;:leTj — 4Tjp1 = {gj}x [ Hj } - RgflLCj + Leja (19)
' ' , Hj
[ R;_1Z7'j — ZTj+1 } = [ [g]]x [ —R;_lL L } } Cj (20)
Cj+1

We see that this is now in the form y = GT Z, with 7 the parameter matrix to be
determined by regression. Note that the vector u is pose-independent, while the torques a
and b are different for each pose.



3.3 Matrix Formulation - Coupled Links, Single Pose

We now determine a sample GT matrix for a manipulator with n = 4 links, going through
5 poses A, B, C, D, and E.
For pose A, we form the following G matrix:

S -
Wl 00
A 2
Ay 0 [ 9 }x 0 0
G = s (21)
0 U A
A 4
o 0 ]
For pose A, we also form the following T matrix:
—AR¢L L 0 0
0 —“RIL L 0
A 1
= 0 0 —ARIL L (22)
0 0 0 —“R3L
.. along with a known torque vector y and unknown torque parameter vector p:
ARy Z — Z47 Aoy
AR} Z4ry — Z4T c
A 1 3 A 2
Yy = ARg ZAm, — 747, for “p = Acy (23)
AR§Z A, —0 Ay
For pose A, then, we have:
U
Ay =[4G T | [Ap (24)

3.4 Matrix Formulation - Multiple Poses

However, this parameterization is ambiguous, since the known torque vector y is of length
3n, while the parameter vector [U,p|” is of length 3n + 2n = 5n. This reflects the fact
that one pose is insufficient to uniquely determine the parameterization. However, since the
parameters ; are independent of pose, the solution can be found with a sufficient number
of poses k.

For multiple poses, we form the GT matrix as follows:

Ay AG AT 0 0 0 0 f{
By, BG 0 BT 0 0 0 L
cyl=% o o °T o o |2 (25)
Dy, G 0 0 0 PT 0 L
By, EG 0 0 0 0 Pr Eg

Thus, for k poses, the known torque vector y is of length len{y} = 3nk, while the
parameter vector p is of length len{p} = 3n + 2nk. Thus, you need at least k = 3 poses
for a complete parameterization, and you can use more poses and a regression analysis to
determine the best-fit parameters.



4 Calibration - Iterative Algorithm

While the coupled matrix method described above works in theory, it does not yield very
precise solutions under linear regression, especially for the end links. There may be a way to
weight the regression in some way, but attempts so far have been unsuccessful. Therefore, we
take advantage of the directional coupling of the pose matrices G and 71" and offer a different
solution method.

4.1 Matrix Forumulation

We start with the single link, single pose equation (Eqn. 19), and rewrite:

J

Ri_\Z7j — Z7j1 — Lejn = [QJL | 1 | = Ri_iLe; (26)

We then extend this equation across multiple poses, for a single link j:

ARI_\ 27y — 27y 0L 0 O W
[ [Y] —MRILL 0 0 11w ]
B, j _Bpij Cj
g 0 R, L 0
= [C JX - CRi e (28)
[ gﬂ]X 0 0 —CRJ_,L C,




5 Second Moment Calculation

Note: This is only in here until it gets its own document.

5.1 Dynamics

Assumptions: No external forces nor torques. Start with the Newton-Euler equations from
above:

fi— R§+1fj+1 +m;g’ =m;al; (29)
7= R T + [ X (reg = rmg) — (R finn) X 1o = Lo + w; x (Lw;) (30)
First, we derive a closed-form solution to the force equation:

fn=—mng" +myal 31
g cn

fn—l - Rz_l (_mngn + mna'gn) - Tnn—lgn_1 + mn—lazn__ll (32)

—mpg" T+ mpat —m, 19" my_a (33)

- nflgnil + mnfla?;—ll + mnag;l (34)

Thus, for a general link j, we have:
fi = =M’ + 3" maal, (35)
h=j

Next, substitute into the torque equation:

7 =Rl + (—Mjgj +> mhaih) X (rej = T'mj) (36)
h=j
Rl <—]\4j+19j+1 + mh@if) X Tej (37)
h=j+1
= IjOzj + w; X ([jo) (38)

Carry though the f;i; rotation matrix, collect the gravity terms, and split the f; cross-
product:

T = RiaTim + ¢ X (= Mjrey + Myroy) + ¢/ x (Mjq17e;) (39)
h=j h=j
- > Mpal, X 1ej (41)
h=j+1
= ]jOéj + wj X (ijj) (42)

Collect the gravity terms, and perform the r.; subtraction:

n

=S o Y =3 ) J A o J Ty, . oy
Tj — R Tiv + 1y X g7+ mjag; X re; Z Mpaly, X rm; = Loy +wj x (Ljw;) (43)
h—j



5.2 Single-Joint Motion - Single Acceleration

Next, let’s examine the relationship between the acceleration vectors acj, aij 41, ete. These
notes are taken loosely from Spong pp. 274 - 279, although various typos warranted re-
derivation.

Assume that only one joint k is moving, while all other joints are held still. Thus, only
links j = k, k 4+ 1,...n are accelerating, along with their corresponding frames.

First, we note that the frame velocities v and the COM velocities v, of links 7 < k in the
inertial frame j = 0 are zero:

vp; = Vg = 0 for j <k (44)

Next, we examine the inertial velocities for links 7 > k. Note, first, that the rotational
velocities w; for j > k expressed in the inertial frame are equal, and are simply termed w’
below. Luckily, velocities just add (since v << ¢).

Vo = W X Ry (rek — o) (45)
vy, = W' X RY (=) (46)
Vo1 = WX R} (=rmi) + &’ % Ry 1 (Feks1 — Tmkt1) (47)
Ul?k-&-l = w’x RO( Tmk) + w” x Rk:+1 (=Tmks1) (48)
(49)

ngj = w¥x R?ch — iR?rmi for 7 >k (50)

Again, this seems obvious in retrospect, but it’s nice to derive it. Before we start differenti-
ating, we split each rotation matrix into time-dependent and time-independent parts. Since
only joint £ is moving, Ri_l is the only time-dependent rotation matrix.

0
Uck 7

(51)

J
0 k—1pk 0 k—1pk
Ry 1Ry Rchj - ZRk—le RiTmi
1=

J
= SWHR)_RY ! |RErg; — > Riry| for j >k (52)

Next, we take the time derivative of the inertial velocities to get the inertial accelerations,
and, by definition of angular velocity, we can make the substitution R = S(w®)R:
for j >k (53)

: j
iy = [S@ORLRET + SR RE [Rbry = 3" Rér
i=k

= Rp[S(@°)RY + S(@")RY_, SR for j >k  (54)

ck]

J
i=k

Ay = WP (w°, ) erc] ZR’“TW for 7 >k (55)

with: W7(w?,&°) = RE [S(@°)R] + S()RY_, ()R] (56)



5.3 Single-Joint Motion - Acceleration Sums

Now that we have an expression for the acceleration a,. of any link in a single-joint motion
system, we turn to deriving an expression for the sums of mass-accelerations present in the

general torque equation:

n
p
Z MpGegp
h=j

(57)

Since only links past the active joint k are accelerating, we assume j > k, and use the

acceleration value derived earlier for each acceleration:
n
Z mp WP (w®,&?) [thch ZR rmZ]
h=j
We see immediately that the matrix W} is independent of h:
n h
W2 (W, &) Z my, [Rﬁrch — Z Rfrmi]
h=3 i=k

Next, we rearrange the sums:

n n h
P k k
WEAS Rimpren — D> REMpT
h=j h=j i=k
n n h J—1
D k k k
W, Z Rymuren — Z Z Rimprm: + Z Rimprm:
h=j h=j |i=j i=k
[ n n h n j—1 1
P k k k
W, Z Rympren — Z Z Rimprm: — Z Z Rimprmi
| h=j h=j i=j h=j i=k

Next, a quick change-of-base ...

Wkp Z Rzmhrdl - Z Z R?mhrmz Z Z R MmpTmi

Lh=j i=j h=i i=k h=j

n n n 7j—1 n
STREmpren — Y R > omy — > R > mh]
h=j i=j h=i i=k h=j

Wi

n n j—1
W2 IS Rimire — > REMir — RfMiji]
= i= ik
n 7j—1
WEAD R (mirei — Mir) — > RfMiji]
=7 i=k

Therefore, we have:

n j—1
Z Rfﬂi - Z RfMjrmi]

i=j i=k

n
p _ p



5.4 Inertial Link Solution

Turning back to the general torque equation, we make the assumption of a single-joint motion
system, and begin by examining the case where j < k (i.e. link j is not moving).

n

- NI o= . J v/ - J — T . "y

Ty — RjTjar + 15 X g7 +mjag; X1 Z My, X Tmj = Ljog 4+ w; X (Ljw;) (68)
h—j

Since, for single-joint motion at joint j = k, links j < k are not moving, we take a.; = 0 for
7 < k. Thus:

n
—

7RI T+ X ¢ = > mualy, X ry = Loy +w; x (Lw;) (69)
h=k

By making the substitution from earlier for the mass-acceleration sum, we have:
. ) [ n k—1
T = Rl T+ X ¢ = WL DRI — Y REMyroi| X 1y = Ljay +wj x (Liw;)  (70)
i=k i=k
We see that the second sum does not exist, and we are left with:
T = RiaTyr + 15 X ¢ = WD R X iy = Loy + wj X (Ljwy) (71)
i=k

Now, in a particular manipulator pose *P of links above the active joint, we see that the
sum quantity is constant. So, we define *ny; as:

Mg = =3 REp; x 1y for j <k (72)
i—k
Then, we have:
7= Ria T+ < g7+ Wing = Ly + w; x (Lw;) (73)

10



5.5 Moving Link Solution

The moving case is a bit more complex, but we start with the same general torque balance
equation. In this case, j > k, so all acceleration terms are nonzero.

n

= R = . J 4 o J T . .

T; — RipaTjen + 1y X g7 +myag; Xre Z Mpp, X Tmj = Loy +wj X (Ljw;) (74)
h—j

We again use the mass-acceleration sum substitution:

: , : J
T = RiaTim + iy x ¢+ mW] RGre = D Rirm| X 1 (75)
i=k
| izl
— ng ZR?,MI — ZRfM]rnu] X T'myj (76)
i=j i=k
= Loy 4w x (Ljw) (77)
Next, we distribute across the cross products:
T = RiaT +py x ¢+ WimRire x e (78)
) J
— Wim; > Rlrm X re (79)
i=k
i=j
Rk
-+ W]gM] Z Rfrmz X T'mj (81)
i=k
= Lo+ w; x (Ijw)) (82)
We note that a x a = 0 and a X b = —b X a, further regroup terms, and introduce an extra
term to synchronize the sum indices:
Tj — R;+17:3'+1 +pyx g — WL R X 1w (83)
i=j
g
+ W,ﬂm] Z (ch X Rf’l“ml> (84)
i=k
o od
— ngMj Z (ij X Rf""mz) (85>
i=k
— W]gMj (ij X R?ij) (86)
+ WM (7my X Rrmy) (87)
= Loy 4w x (Lw) (88)

11



We can now combine the sums:

T~ R§+1fj+1 +uxg - ng ZRfﬂi X Ty (89)
i=j
) J
+ W]gm] Z (ch X R?Tmi) (90)
i=k
) J
— W]gM] Z (rmj X Rfrm7,> (91)
i=k

+ WiM; (ij X R?"’mj) = Lo +w; x (Ljw;) (92)

T — R§+17?j+1 +uyxg — Wi Z RE s X Ty (93)
i=j
o J
+ W]g Z (mjrcj X Rfrm, — Mjrmj X R?’f’mi) (94)
i=k

+ WiM; (ij X Rf”nj) = Ljaj +w; x (Ljw;) (95)

We further group the inside of the sum, and find another pu:

T; — R§+17_'3‘+1 +ujxg — Wi Z R Hi X T (96)
i=j
_j
+ WP (g % Rirm) (97)
i=k

+ WiM; (rmj x Rrm;) = Loy +wj x (Lw) (98)

We then pull out the velocity- and acceleration-dependent W,g :

T = Rp Ty + 4 X ¢ (99)
| j n

+ W]g My X ZR?T}M — ZR‘fﬂl X T -+ Mj (ij X R;‘?rmj> (100)
i=k i=j

= IjOéj +Wj X (ijj) (101)

We note that the bracketed quantity is independent of the motion of the manipulator for a
fixed pose *P above the single moving joint k, so we define “n; as follows:

J n
g = 1 X DRI — DRI X rnj + M (rmj X XR?rmj) for j >k (102)
i=k i=j
Thus, the torque equation for a moving link reduces to:

—

7y = Rl T + 15 % ¢+ Wiy = Loy + wy x (Liw;) (103)

We see that this is equivalent to the inertial-link case, simply with a more expanded definition
of the vector *ny;.

12



5.6 Torque Equation Summary

Thus, we have the single-joint motion torque equation:
Ty = Ry Tjen + 1y X g7+ W', 0" 0y = Loy +w; x (Lw)) (104)

The definition of the vector *n; for pose X depends on whether the link j is moving.

_ZXRi?M X Tmj for j <k
Ky = j Wt (105)
i X ZXR;“TW- — ZXR,’;,uZ- X Tpj + M (rmj X XR?rmJ) for j > k
i=k i=j

5.7 The Inertia Matrix

Next, we turn our attention to the inertia matrix I:

I:cz ]zy Imz ]zy = Iya:
[=|1I, I, I.| with I.=1I, (106)
[zx Izy Izz Iyz - Izy

We examine the right-hand side of the torque equation:
Ta+wx (lw) =Ta+ S(w)lw (107)

We carry out the matrix multiplication by hand:

[x:r; Ia}y Ixz Oy 0 —Wy Wy Im: [xy [xz Wy
Lo Iy Lo || oy [+ wo 0 —wol||lw Ly L. || w, (108)
]z:r Izy Izz 7 | Wy W 0 1L Iz:p Izy Izz Wy
Lpoy + Loy, + Lo, ] [0 —w, wy | [ Lawe + Lywy + Lw,
Lyyoy + Iyyoy, + Ioo, | + | w, 0 —w, Lyywy + Iyywy + 1w, (109)
Ip.oap + Iy 0 + 1o, | | —Wwy Wy 0 || Lewe + Lyowy + 1w,
Loy + Lpyoy, + Lo, —Lpywow, — Iyywyw, — Iyzwg + I wewy + Iyzws + L wyw,
Loy + Iyyoy + Lo | + | Lpwews + Lywyw, + Low? — Law? — Twwy — Law,w,
Lo + 1o+ 1, —Ipwopwy — ]zyws — I wyw, + Imywﬁ + Lyywawy + Ly waw,
(110)
I
O —WyWr Wy Oy — WaW, Q FWewy W — wr ﬁyy
Wl Qy Wi, Qp Fwyw, WE—w? o a, — wwy IZZ (111)
—WeWy Wy a, W2 — W) Oy — WyWws  Qy F W, [a:y
L ]yz a
Thus, we have:
Ta+w x ({w) = Aj(o,wj); (112)

13



5.8 Matrix Formulation

Next, we start with a matrix formulation, using our old Danavit-Hartenberg equations for
joint torques. Of course,

10 0 .
L=|0 1] and Z= |0 | and ¢; = [ b]- ] (113)
0 0 1 J

Note that the vectors *n; are constant during a particular ppse P of upper links
j = k,k+1...,n as joint k moves. For a particular pose XP for links after the moving
joint k, we have the following familiar torque equation, with the inertia matrix substitution
derived earlier:

-
—

Ty = R Tjen + 15 % ¢+ W, 0°) niy = Aj(ay,wy) I (114)

In matrix language, this corresponds to:
R)_iLej + R, Z75 — Lejin — Zri + S(wy)g? + W0, 00 ngy = Aj(ag,w)) T (115)
Regroup, knowns on the left, unknowns on the right:

Rg:leTj — LCj_H — ZTj.H -+ S(uj)gj = Aj(Oéj, Wj>fj — Wg(wo, CZ)O)X’f]kj — Rg:flLCJX (116)

Now, we hold an upper pose XP, and perform oscillations about joint k in a number of lower
poses AP, ¥P, &P etc. collecting a number of joint-torque and joint-position data points for
each lower pose 4P, P, XP etc. Thus, we have:

| | I
gyj AA; =AWl AR L 0 0 0 Nk
BYj 34, —zWi 0 —3Rj L0 0 e
=17 . %0 (117)
: : : 0 0 . 0 BECj
NYj NA; AW 0 0 0 —wRj.L :
X
L NG
with §y; = R)_1Z7j — Lejon — Z7j1 + S(uy)g? (118)

Or, better yet, to determine p; at the same time:

RI_\Z7) = 27501 = Legin = S(97)py + Aj(ay, i) = W0, &) ¥nyy — R L) (119)

J

]
Xy; 5(97) AA; —XW;i —ix(Ré_lL 0 0 0 X njk
N S(g") B3A; —sWi 0 —3R, L0 0 X
o I | N EED
: ; : P 0 0 . 0 Xe;
NV S(g7) ~A; Wi 0 0 0 —aRI,L :

X

L NG

14



5.9 For Future Reference (Solving 7s)
Now, let’s further look at the torque equation for j > k, i.e. compute the torques about the

moving join j = k.

— A (21)

i=k i=j

, , . J n
7 — Rj T+ py X ¢+ RyWY {ﬂj X > Rirmi — D R X Tmj

. , . i1 n
Ty =Ry Tty < g +ROWE |y x Y RiTmi + iy X 1oy — D Rips X rmyy | = AT (122)
i—k =5
, ) , i—1 n .
Ty = R T+ g x g7+ RaWY |y x Y Rirm + |1y = DR | Xy | = AT (123)
i=k i—j

15



