

Puck[®] P4-16™

Barrett's latest advancement comes in the form of a 16mm high-performance Puck®. With patented dual iSense control, and onboard magnetic encoder, motor control has never been so sophisticated, yet so simple. This revolutionary design features snap-on connectors and daisy chain wiring for quick and easy integration with any low space, high-performance application.

NO SPACE? NO PROBLEM

The P4 - 16[™] is designed to fit seamlessly in any situation. At just 1.2 cubic cm, 2 grams, and up to 1/4KW drive power, this motor controller elegantly balances power and size. While this motor controller runs complex space-vector commutation and constant high speed computations, implementation is about as simple as it gets.

P4-16[™] mounted on EC-max 16 Motor (penny for scale)

LIGHT WEIGHT, HEAVY FEATURES

SIMPLICITY

Daisy Chain topology reduces wiring and enables a network of up 31 Pucks® per bus. With on-board encoder, the P4-16[™] eliminates signal degradation, power loss, and cable bulk inherent to standard motor-control.

COMPACT DESIGN

At just 6mm tall, the P4-16[™] fits snugly against the back of any motor. Just snap the Puck into place, and let decades of Barrett engineering handle the rest.

POWER AND ELEGANCE

With 250W of power, heat can be a challenge. With built in heatsink and an operating range of -25°C to 100°C, the P4-16[™] offers near silent, fan-less performance without compromising speed or payload.

FEATURES

FEATURES

- High speed CANopen communication
- 5 Wire Bus Topology: 2xCAN, Bus Voltage, 12V, and C
- Up to 31 controllers per bus
- Built in magnetic encoder
- 5V and 3.3V auxiliaries outputs
- Dual iSense current sensor
- Space-Vector Commutation
- 32-bit floating point processor
- Low torque ripple
- Quiet, fan-less operation
- Internal temperature sensors
- In-system field upgradeable firmware
- Digital Hall-array feedback
- Adjustable PWM frequency (up to 100KHz)
- Dual Analog Inputs (16-bit)
- Up to 6 Digital I/O
- External Encoder Capable: SPI or Quadrature
- SPI Master Peripheral Support

SPECIFICATIONS

Input Voltage: 12V-50V DC Drive Current: 2.5A Continuous, 5A Peak Output Power: 250W Peak Dimensions: 16mm OD, 6mm Height Mass: Total 2g Absolute Encoder: 12-bit Angular Resolution Bus Length: Max 20m Operating Temp: -25°C - 100°C

Contact Us B7276 Rev AA 2024 APR 16

(617) 252-9000

() www.barrett.com

Barrett Puck[®] P4-16[™] Motor-Interface-Board and Magnet-Mounting Specifications

This page contains Motor-Interface-Board (MIB) specifications for Barrett Technology's Puck P4-16[™] module. The MIB may be designed by the customer using the guidelines shown below. A 2 x 2mm magnet with a radial N-S field attached to the rotating shaft of the motor at the distance specified. Contact Barrett for design assistance.

All Dimensions in mm

Power Connector on MIB				
Pin No.	Name	Туре	Description	
1-10	Phase A	Motor Lead	Output to Phase A	
11-20	Phase B	Motor Lead	Output to Phase A	
21-30	Phase C	Motor Lead	Output to Phase A	
31	VBus	Power	VBus Input	
32	GND	Power	Ground	

Signal Connector on MIB						
Pin No.	Name	Туре	Description			
1, 3	3.3∨	Power	3.3V Output			
2	Reset_B	Digital In	Factory-use Only			
4	JTAG_TDI	Digital I/O	JTAG Data In			
6	JTAG_TDO	Digital I/O	JTAG Data Out			
8	JTAG_TCLK	Digital I/O	JTAG Clock			
10	JTAG_TMS	Digital I/O	JTAG Select			
12	ADC1	Analog I/O	12-bit 3.3V Input			
13	I2C_CLK	Digital I/O	I2C Clock			
14	ADC2	Analog I/O	12-bit 3.3V Input			
15	CAN_LO	Digital I/O	CAN Low Diff.			
16	CAN_HI	Digital I/O	CAN High Diff.			
17	CS Digital I/O 2	Digital I/O	SPI Chip Select Digital I/O 2			
18	SCK	Digital I/O	SPI Clock			
19	MISO	Digital I/O	SPI MISO			
21	MOSI	Digital I/O	SPI MOSI			
23	EXT_QUAD_A Digital I/O 3	Digital I/O	Quad ENC In A Digital I/O 3			
25	EXT_QUAD_B Digital I/O 4	Digital I/O	Quad ENC In B Digital I/O 4			
27	Digital I/O 1	Digital I/O	I/O Pin 1			
28	I2C_DATA	Digital I/O	I2C Data			
29	Digital I/O 5	Digital I/O	I/O Pin 5			
30, 32	5V	Power	5V Output			
31	Digital I/O 6	Digital I/O	I/O Pin 6			
33	12V	Power	12V Input			
34	GND	Power	Ground			
5, 7, 9, 11, 20, 22, 24, 26	NC	NC	Not Connected			

.

All **BOLD** signals are mandatory connections

Contact Us

(617) 252-90<u>00</u>

🛞 www.barrett.com

US Patents: 11,290,043; 10,148,155; 7,893,644; 7,854,631; 7,511,443

(E)