
Estimating Angular Acceleration from Magnetic Encoder Measurements

Introduction and Motivation

In many control applications, accessibility to all three states of motion – position,
velocity, and acceleration – can allow for greatly improved system responses. By placing gains
on the feedback path of each state, a controls engineer can create an optimized control law by
selecting the best location for the system’s dominant poles. In many cases, such a controller,
which often happens to be a linear-quadratic regulator, can provide the engineer with a simple
yet elegant means of controlling an extraordinarily complex plant. In addition to full state
feedback, the availability of velocity and acceleration values can also aid in numerous other
controls endeavors, such the identification of various inertias through acceleration measurement.
For these reasons and many others, it is important to provide a motor’s user with reliable
acceleration and velocity output.

The Challenge of Acceleration Estimation

By far, obtaining clean acceleration output is the most difficult aspect of achieving full
state feedback. Because the position values from the magnetic encoder must be differentiated
twice, a great deal of noise is injected into the acceleration signal. In most cases, a simple filter
could achieve reasonable velocity output, since the noise contribution from a single
differentiation is somewhat minimal. Therefore, the focus of this research endeavor will be to
obtain reliable acceleration values.

An example of twice differentiated position data obtained via magnetic encoder

A
c
c
e
le

ra
ti

o
n

 (
e
n

c
o
d

e
r

c
o
u

n
ts

/(
s
a
m

p
le

ti

m
e
)2

)

Sample Time (1/5000
seconds)

Weighted Linear Regression

One of the first techniques attempted in the effort to achieve the estimation of the motor
shaft’s velocity and acceleration was Weighted Linear Regression.

The method to formulate running linear regression is as follows:

 Define the instantaneous position to be a parabola of the form,

where the acceleration is assumed to be constant over a given window of points. In the case of
this experiment, the window size was twenty samples long, the exact number of encoder values
recorded at a sample rate of 5kHz between every other cycle of the outer 1 kHz control loop. In

this equation indicates position, indicates velocity, indicates acceleration and represents

time.

The goal of linear regression is to approximate the coefficients , , and . This process

is started by forming the matrix , which consists i rows of the values 1, , . In this specific

case, i is equivalent to 20.

The next matrix essential to the linear regression algorithm is the matrix , which is merely

equivalent to:

Now, finally, can the measured values p be related to the coefficient matrix , as shown below:

Thus, to solve for , two additional sub-matrixes A and b may be formed:

,

where is a one-dimensional matrix of length i, consisting of tuned weighting factors, and

.

The matrix equations now simplify to which can be simply solved as .

To compute the A and b matrixes more easily, their formation can be simplified to two
summations, which are described below:

NOTE: In the above equations, k represents the numbers from 1 to the length of the moving
window, and both i and j represent the dimensions of the computed matrixes (In this case, 3 and
3 respectively).

This algorithm was implemented first using Octave and then in C. However, it was
found that this algorithm was too computationally intensive and yielded too poor of results to be
the best way to obtain accurately estimated acceleration data. See “linear_regression.m” for
Octave implementation and test trials. The c-code has also been included (linear_regression.c)
but may not be suitable for compilation. Furthermore, one may also try adjusting the weights in
the linear regression file. It is important to notice that the weights provide little difference in
output acceleration values and tuning all twenty weights by hand is an extremely tedious process.

Note: For all figures depicting acceleration, green circles represent the simply filtered
(FIR) accelerations as shown in the Octave testfiles, and the blue plots represent the results of the
given acceleration estimation algorithm.

Linear Regression Algorithm: Step Input

A
c
c
e
le

ra
ti

o
n

 (
e
n

c
o
d

e
r

c
o
u

n
ts

/(
s
a
m

p
le

ti

m
e
)2

)

Sample Time (1/5000
seconds)

Linear Regression Algorithm: Medium Frequency Square Wave Input

Linear Regression Algorithm: High Frequency Square Wave Input

A
c
c
e
le

ra
ti

o
n

 (
e
n

c
o
d

e
r

c
o
u

n
ts

/(
s
a
m

p
le

ti

m
e
)2

)

A
c
c
e
le

ra
ti

o
n

 (
e
n

c
o
d

e
r

c
o
u

n
ts

/(
s
a
m

p
le

ti

m
e
)2

)

Sample Time (1/5000
seconds)

Sample Time (1/5000
seconds)

FIR and IIR Filtering

After the weighted linear regression proved to be unsatisfactory, a second method
involving digital filtering was investigated.

The simplest method of digital filtering involves the use of a moving average filter. A
moving average filter is a FIR (finite impulse response) filter whose coefficients are all equal to
one. The only difference between an averaging filter and an FIR filter is that the coefficients in
the general FIR filter are allowed to vary to achieve better performance.

In explaining the FIR filter, it is easiest to describe the algorithm itself, which consists of
a single, moving summation. In the discrete domain, the filter can be described as,

where … are the filter coefficients, y is the output, x is the input and N is the filter order.

There are many benefits to the FIR filter. The first benefit is that the filter can be implemented
very easily in software with a simple code. Another benefit is that the phase response varies
linearly with increasing order, which leads to decreased delay and improved delay prediction. In
this investigation, two FIR filters were placed in cascade to improve the performance of the FIR
filtering technique. Although this action increases the delay of the acceleration signal slightly, it
does not seem to impede on overall performance.

To carry out filter design, MATLAB has a built in command “fir1”, which allows one to
receive a set of FIR filter coefficients from the parameters cutoff frequency and filter order. The
specific code used for filter design in MATLAB is contained in the MATLAB only file,
“filters_matlab.m”. In this investigation, a filter order of 20 was selected along with a cutoff
frequency ratio of 0.02 (cutoff frequency divided by twice the sample time, i.e. (50Hz/
(2*5kHz))). The plot below depicts the Magnitude and Phase response of the designed 20 th order
FIR filter. Notice how the phase decreases linearly with increasing frequency.

 Once designed, the FIR filter was implemented using real data in Octave. The results of this
implementation are shown in the plots below. It is important to note that the double
differentiation takes place before the filtering in an effort to eliminate the possibility for overflow
(acceleration values are typically much smaller than position values). Preliminary tests reveal
that an extremely high order filter is needed to output reasonable acceleration values. In addition
to increasing delay, a high order filter requires a significant amount of storage, especially when
the integers being used are 32 bits in length. One can also observe the increased delay with
increasing frequency. For these reasons, the FIR filter was implemented in C-code on a DSP,
but only to provide velocity output. See “fir.m” to examine the Octave implementation of the
FIR filter. “FIR.C” in the DSP subfolder implements the FIR filter in C.

FIR Filter: Step Input

FIR Filter: Medium Frequency Input

A
c
c
e
le

ra
ti

o
n

 (
e
n

c
o
d

e
r

c
o
u

n
ts

/(
s
a
m

p
le

ti

m
e
)2

)
A

c
c
e
le

ra
ti

o
n

 (
e
n

c
o
d

e
r

c
o
u

n
ts

/(
s
a
m

p
le

ti

m
e
)2

)

Sample Time (1/5000
seconds)

Sample Time (1/5000
seconds)

FIR Filter: High Frequency Input

The second digital filter investigated for the purpose of extracting acceleration data was
the IIR (infinite impulse response) filter. The IIR filter differs from the FIR filter in that it not
only takes into consideration the input to the system, but it also considers the past filter outputs.
The difference equation for the IIR filter is as follows,

where y is the output, x is the input, … are the input coefficients … are the

output coefficients and N is the filter order. Fortunately, as in the case of the FIR filter,
MATLAB provides software to design IIR filters. Because of its extremely smooth frequency
response, a 4th order Butterworth (MATLAB Command “butter”) filter was designed to filter the
acceleration data at 50 Hz, which corresponds to 0.02 in the digital domain (50Hz/(2*5kHz)).
Once the 4th order response was seen to have desirable characteristics, the filter was implemented
in C-code as two cascaded 2nd order filters. By cascading the filters, one helps reduce the
occurrence of massive integer overflow. Although the Butterworth filters seemed to be an
excellent solution for obtaining acceleration data from position measurements, it was soon found
that they created a significant amount of signal delay at higher frequencies (phase increases
exponentially with increasing frequency) and created a much more rounded response, getting rid
of not only the high frequency noise but also the high frequency changes in acceleration which
could be important in more advanced controls situations. The magnitude and phase plot of the
Butterworth filter can be seen in the plots below. Notice how the phase increases exponentially
with increasing frequency.

A
c
c
e
le

ra
ti

o
n

 (
e
n

c
o
d

e
r

c
o
u

n
ts

/(
s
a
m

p
le

ti

m
e
)2

)

Sample Time (1/5000
seconds)

Once the Butterworth filter coefficients were obtained, the filter was implemented in
Octave. The results of this analysis of can be found in following plots, which were generated by
running the file “bw.m” in Octave. The filters themselves have been implemented in the file
BW.C.

A
c
c
e
le

ra
ti

o
n

 (
e
n

c
o
d

e
r

c
o
u

n
ts

/(
s
a
m

p
le

ti

m
e
)2

)

Sample Time (1/5000
seconds)

Butterworth Filter: Step Input

Butterworth Filter: Medium Frequency Input

Butterworth Filter: High Frequency Input

A
c
c
e
le

ra
ti

o
n

 (
e
n

c
o
d

e
r

c
o
u

n
ts

/(
s
a
m

p
le

ti

m
e
)2

)
A

c
c
e
le

ra
ti

o
n

 (
e
n

c
o
d

e
r

c
o
u

n
ts

/(
s
a
m

p
le

ti

m
e
)2

)

Sample Time (1/5000
seconds)

Sample Time (1/5000
seconds)

Kalman and Alpha-Beta-Gamma Filtering

The final attempt to extract acceleration data from the magnetic encoder measurements
involved the implementation of a Kalman/Alpha-Beta-Gamma Filter. The Kalman filter is a
recursive filter which uses a model and collected data to estimate the actual values of the states
occurring in a given system. The Kalman filter hinges on the fact that the values of the states lie
somewhere between the model values and the measured values, and tries to pinpoint the location
of these state values through probabilistic and optimal methods.

Before beginning the explanation of the Kalman filter, a review of discrete state space
will be attempted. Note: All of the following work assumes linear systems.

All linear systems can be represented in the form,

Where x[k] represents a marix of current state values, x[k-1] represents the previous state values,
u[k] represents the current input, Ak and Bk are matrixes which represent the model of the
system, Ck determines which of the states, and Dk is zero. As the system moves through time, k
increments during each sample, yielding a new current set of states that can be derived from the
previous states and the current input.

To describe the Kalman filter itself, it is best to begin with an explanation of the various
matrices.

First one must define (mxn) and (mx1) which define the state transition for the system.

Then, one must define the P matrix, which is the error/confidence matrix. This matrix will help
determine whether more weight goes to the model or more weight goes to the measurement

value. It has the same dimensions as the matrix (mxn), and oftentimes, the P matrix is

initialized with some constant value along the diagonal. Occasionally, this constant value
corresponds to the covariance of the model, but many times this matrix can be left full of zeros,
since this matrix will change during the Kalman filter cycle.

The next matrix to be defined is Q. The Q matrix, which also has the same dimensions as

(mxn), represents the process noise covariance. The Q matrix represents errors present in the
model, and will give either a higher or lower “weight” to the measured data. Usually the values
of the diagonals can be tuned to provide the desired response.

The matrix (1xm) determines which of the states is compared to the measured value, and

corresponds directly to the matrix in the state space representation.

The value R (typically 1x1) represents the measurement noise covariance. This value will often
vary from one sample to another, and can be computed by squaring the value of a running
standard deviation. In the case of this report, R was assumed to be a fixed value, and because the
magnetic encoder is fairly accurate, this assumption seemed to work well. When readings are
less accurate it may be advantageous to compute a running covariance of the incoming
measurement data.

 Now that all the primary matrixes have been defined, the Kalman filter equations can be
explored.

The first four equations are used solely to find the Kalman gains,

Where K (mx1) is a matrix a matrix of Kalman gains, S (1x1) is an intermediate matrix, and P1
(mxn) is an intermediate matrix. The actual measurement values have an impact on the
formation of the Kalman gains only if the measurement noise covariance change is taken into
consideration. The final equation in the above set only seeks to iterate the values of P.

The next two equations of the Kalman filter deal with the model of the system and the Kalman
gains determined in the previous steps.

Note: In the above equations, Z represents the measured values, and ERROR represents the
difference between the predicted value and the measured value.

Originally a three state Kalman filter was implemented in Octave and then in C-code. However,
due to overflow issues, the filter was eventually reduced to a two state system. This was
accomplished by a simple differentiation and filtering of the incoming position data to yield
velocity input. A system was then developed to relate velocity and acceleration in the DC motor,
and then used in the Kalman filter. Many Kalman filters and Alpha-Beta-Gamma filters are
demonstrated in the Octave m-files. The files “kalman_without_model.m” and
“alpha_beta_gamma_without_model.m” demonstrate the implementation of both filter types
where only the constant acceleration equations of classic physics are used to guide the filter. The
files “kalman_with_model.m” and “alpha_beta_gamma_with_model.m” demonstrate the use of a

third order model (three states) which relates the position of the motor to the torque input. The
files “kalman_with_model2x2.m” and “alpha_beta_gamma_with_model2x2.m” implement only
the second order model (two states) which relates velocity to the torque input to the motor.
Although a three state Kalman filter was implemented in c-code using 64-bit computation, this
was not the final version implemented on the DSP since it proved to be too computationally
intensive. Instead a simpler, two state Kalman filter was implemented in c-code and executed on
the DSP. These two c-files can be found in “kalman.c”, “kalman_reborn.c” respectively. In the
DSP, the file “KALMAN.C” only implements an alpha-beta filter, whereas the file
“KALMAN2.C” actually implements the full Kalman filter algorithm.

As seen below, the results of Kalman filtering proved to be very successful give a reasonable
model.

Alpha-Beta-Gamma Filter without Model: Step Input

A
c
c
e
le

ra
ti

o
n

 (
e
n

c
o
d

e
r

c
o
u

n
ts

/(
s
a
m

p
le

ti

m
e
)2

)

Sample Time (1/5000 seconds)

Alpha-Beta-Gamma Filter without Model: Middle Frequency Torque Input Square Wave

Alpha-Beta-Gamma Filter without Model: High Frequency Torque Input Square Wave

A
c
c
e
le

ra
ti

o
n

 (
e
n

c
o
d

e
r

c
o
u

n
ts

/(
s
a
m

p
le

ti

m
e
)2

)

A
c
c
e
le

ra
ti

o
n

 (
e
n

c
o
d

e
r

c
o
u

n
ts

/(
s
a
m

p
le

ti

m
e
)2

)

Sample Time (1/5000
seconds)

Sample Time (1/5000
seconds)

Kalman Filter without Model: Step Input

Kalman Filter without Model: Middle Frequency Square Wave

A
c
c
e
le

ra
ti

o
n

 (
e
n

c
o
d

e
r

c
o
u

n
ts

/(
s
a
m

p
le

ti

m
e
)2

)
A

c
c
e
le

ra
ti

o
n

 (
e
n

c
o
d

e
r

c
o
u

n
ts

/(
s
a
m

p
le

ti

m
e
)2

)

A
c
c
e
le

ra
ti

o
n

 (
e
n

c
o
d

e
r

c
o
u

n
ts

/(
s
a
m

p
le

ti

m
e
)2

)

Sample Time (1/5000
seconds)

Sample Time (1/5000
seconds)

Kalman Filter without Model: High Frequency Square Wave

Alpha-Beta-Gamma Filter with Model: Step Input

A
c
c
e
le

ra
ti

o
n

 (
e
n

c
o
d

e
r

c
o
u

n
ts

/(
s
a
m

p
le

ti

m
e
)2

)
A

c
c
e
le

ra
ti

o
n

 (
e
n

c
o
d

e
r

c
o
u

n
ts

/(
s
a
m

p
le

ti

m
e
)2

)

Sample Time (1/5000
seconds)

Sample Time (1/5000
seconds)

Alpha-Beta-Gamma Filter with Model: Middle Frequency Square Wave Input

Alpha-Beta-Gamma Filter with Model: High Frequency Square Wave Input

A
c
c
e
le

ra
ti

o
n

 (
e
n

c
o
d

e
r

c
o
u

n
ts

/(
s
a
m

p
le

ti

m
e
)2

)
A

c
c
e
le

ra
ti

o
n

 (
e
n

c
o
d

e
r

c
o
u

n
ts

/(
s
a
m

p
le

ti

m
e
)2

)

Sample Time (1/5000
seconds)

Sample Time (1/5000
seconds)

Kalman Filter with Model: Step Input

Kalman Filter with Model: Middle Frequency Square Wave Input

Sample Time (1/5000
seconds)

A
c
c
e
le

ra
ti

o
n

 (
e
n

c
o
d

e
r

c
o
u

n
ts

/(
s
a
m

p
le

ti

m
e
)2

)
A

c
c
e
le

ra
ti

o
n

 (
e
n

c
o
d

e
r

c
o
u

n
ts

/(
s
a
m

p
le

ti

m
e
)2

)

Sample Time (1/5000
seconds)

Kalman Filter with Model: High Frequency Square Wave Input

Alpha-Beta-Gamma Filter with Model: Step Input, Velocity Measurement

A
c
c
e
le

ra
ti

o
n

 (
e
n

c
o
d

e
r

c
o
u

n
ts

/(
s
a
m

p
le

ti

m
e
)2

)

A
c
c
e
le

ra
ti

o
n

 (
e
n

c
o
d

e
r

c
o
u

n
ts

/(
s
a
m

p
le

ti

m
e
)2

)

A
c
c
e
le

ra
ti

o
n

 (
e
n

c
o
d

e
r

c
o
u

n
ts

/(
s
a
m

p
le

ti

m
e
)2

)

Sample Time (1/5000
seconds)

Sample Time (1/5000
seconds)

Alpha-Beta-Gamma Filter with Model: Middle Frequency Square Wave Input, Velocity Measurement

Alpha-Beta-Gamma Filter with Model: High Frequency Square Wave Input, Velocity Measurement

A
c
c
e
le

ra
ti

o
n

 (
e
n

c
o
d

e
r

c
o
u

n
ts

/(
s
a
m

p
le

ti

m
e
)2

)
A

c
c
e
le

ra
ti

o
n

 (
e
n

c
o
d

e
r

c
o
u

n
ts

/(
s
a
m

p
le

ti

m
e
)2

)

Sample Time (1/5000
seconds)

Sample Time (1/5000
seconds)

Kalman Filter with Model: Step Input, Velocity Measurement

Kalman Filter with Model: Middle Frequency Square Wave Input, Velocity Measurement

A
c
c
e
le

ra
ti

o
n

 (
e
n

c
o
d

e
r

c
o
u

n
ts

/(
s
a
m

p
le

ti

m
e
)2

)

A
c
c
e
le

ra
ti

o
n

 (
e
n

c
o
d

e
r

c
o
u

n
ts

/(
s
a
m

p
le

ti

m
e
)2

)

Sample Time (1/5000
seconds)

Sample Time (1/5000
seconds)

Alpha-Beta-Gamma Filter with Model: High Frequency Square Wave Input, Velocity Measurement

FINAL IMPLEMENTATION (C-CODE, FIXED POINT)

Kalman Filter with Model: Step Input, Velocity Measurement, Fixed Point C-code

A
c
c
e
le

ra
ti

o
n

 (
e
n

c
o
d

e
r

c
o
u

n
ts

/(
s
a
m

p
le

ti

m
e
)2

)

Sample Time (1/5000
seconds)

A
c
c
e
le

ra
ti

o
n

 (
e
n

c
o
d

e
r

c
o
u

n
ts

/(
s
a
m

p
le

ti

m
e
)2

)

Sample Time (1/5000
seconds)

Kalman Filter with Model: Middle Frequency Square Wave Input, Velocity Measurement, Fixed Point C-code

Kalman Filter with Model: High Frequency Square Wave Input, Velocity Measurement, Fixed Point C-code

A
c
c
e
le

ra
ti

o
n

 (
e
n

c
o
d

e
r

c
o
u

n
ts

/(
s
a
m

p
le

ti

m
e
)2

)

A
c
c
e
le

ra
ti

o
n

 (
e
n

c
o
d

e
r

c
o
u

n
ts

/(
s
a
m

p
le

ti

m
e
)2

)

Sample Time (1/5000
seconds)

Sample Time (1/5000
seconds)

System Identification

Fortunately, in most situations, the model of a DC motor can be approximated as a first order
linear system. Whether torque controlled or position controlled, most motors will reach a steady
state velocity under some step input. If the transient velocity rise time can be captured in data,
then one could easily use the properties of a first order system to obtain an approximate model.

Since we know that a first order system has the form,

where Y(s) is the output, X(s) is the input, J is the overall inertia of the system and b overall is
the damping of the system. Note: J and b do not refer merely to physical inertia and damping,
but also encapsulate the motor’s electrical properties as well.

To determine b, one must merely examine the steady state speed and the value of the input. The
equation for finding b is,

where X is the input (mA in this specific case) and is the steady state speed.

To find J, all one needs is a value for the first order time constant, which is the time value at 63%
of the steady state speed.

Once the time constant is obtained, J is found through the equation:

Now, since we measure position, not acceleration, an integration term must be added to force the
output of the system to become position. A revised first order model, where V(s) represents
velocity and T(s) represents applied torque, is shown below:

Integrating velocity to obtain position is carried out as follows:

In the previous equation, X(s) represents position.

To achieve a state space representation, the transfer function above must be converted from the
frequency domain to the time domain.

Before proceeding to create a state space system, it is important to realize that the system above
is only second order. To have access to the state of velocity, a third order differential equation is

needed. This can be obtained by perturbing the third derivative of position, .

Now, that a third order differential equation has been created, state space formation can take
place. The variable k can be selected as an arbitrary small value so that it only slightly changes
the system’s response.

If a full state feedback system were to be designed, the above model would be sufficient. If the
design method will only involve root locus or frequency domain techniques, the transfer
function,

would be sufficient.

If, instead of for control design, a Kalman filter observer was desired, the state space model
above would need to be discretized. This is easily accomplished in a program like MATLAB or
Octave and can be carried out in “make_model.m”. Plots of actual collected data and the

corresponding model are shown below. The green curves represent the model, whereas the blue
curves represent actual data (or differentiated and filtered data).

P
o
s
it

io
n

 (
E
n

c
o
d

e
r

C
o
u

n
ts

)
V

e
lo

c
it

y
 (

E
n

c
o
d

e
r

C
o
u

n
ts

 p
e
r

S
a
m

p
le

T
im

e
)

Sample Time (1/5000
seconds)

Sample Time (1/5000
seconds)

 Adjust the values for J and b to correspond to the values output by the DSP and record the
discrete transfer function values. Note: It is important to use a zero order hold to discretize the
system. Both MATLAB and Octave accomplish this by numerically determining the matrix
exponential of the A and B state space matrixes. Methods such as Tustin are not typically exact
enough for this filtering application.

To relate velocity to the torque input command, as is done in the C-code, one must
merely change the state space representation as follows:

Furthermore, when rounding the values in the state space matrix for implementation in the C-
code, it is important to remember that in the discrete 2x2 A-matrix, the first element must not be
rounded to one. It is important that this value is set to be close to the actual floating point value
of the first element in the discretized matrix (i.e. 0.99=> 127/128). Values which are close to but
not equal to one must be maintained as such to prevent instability.

Operation in Firmware Code

In the firmware, the filters and model generation code are accessed using several key firmware
parameters.

To select a filter, use property X2. Setting X2 to 1, filters velocity using a 2nd order Butterworth
filter. Setting X2 to 2, filters acceleration using a 4th order Butterworth filter. Setting X2 to 3
filters acceleration using a 4th order Butterworth filter and velocity using a 2nd order Butterworth
filter. This feature, although desirable, still has a bug which must be worked out. Setting X2 to
4, filters velocity with a 20th order FIR filter. Setting X2 to 5, filters both velocity and
acceleration using a Kalman filter.

Note: The Butterworth filter coefficients could easily be created as parameters able to be
accessed from outside the DSP. This could also be done for the FIR coefficients, but at least 10
additional properties would be needed.

Both the FIR filter and the Butterworth filter use coefficients in Q22.10 format. Velocity is
output in the same format, whereas acceleration values are output in Q14.18 format.

To determine a given motor’s model, set property PLOG (101) to 2. This will apply a step input
of 500 mA to the motor, and fit a first order model to the velocity curve. The coefficients J and b
as discussed in this document will be output to properties X0 and X1 respectively. These

coefficients can then be used as previously mentioned to design a controller or to design an
observer as used in the Kalman filter.

 The Kalman filter, because of the need to eliminate overflow in the intermediate calculations
while maintaining a reasonable accuracy, is slightly complicated to modify. After a 2x2 discrete
A matrix and a 2x1 discrete B matrix are determined using the provided Octave code, these
parameters must be added into the Kalman filter code. In the Kalman filter without automatic
gain tuning (i.e. alpha_beta filter), the A and B matrix values are represented with a numerator
and a denominator. The denominator is required to be a power of 2 and the numerator is some
integer value, which when divided by the denominator, approximates the fractional values
present in the A and B matrixes. Since the top left value in the A matrix will have the largest
value, this value will be what determines the maximum velocity input value before overflow. If
the velocity is scaled up by 2^18 to provide adequate acceleration resolution, then it is important
to regulate the numerator of the first value in the A matrix allows for ample velocity input. For
example, the maximum value for the a11 numerator is 2^7 which leaves 2^6 encoder counts per
commutation loop (2^(31-7-18)) available for maximum velocity input. This velocity value
equates to 78 rev/s. If the Kalman filter with automatic gain tuning is used, then additional
values for the A matrix numerator must be provided for the automatic gain tuning operations.
These special A matrix numerator values all must be in Q16.16 format.

In the case of the Kalman filter with the manually tuned gains, the 4 values in the A matrix and
the 2 values in the B matrix should have their numerator and denominator values as configurable
properties. The two gains should also have their numerators and denominator values as
configurable properties. In the case of the Kalman filter with the automatically tuned gains, the
A and B matrixes should have their numerator and denominator values as configurable properties
as well as the special Q16.16 values for the Q16.16 A matrix. Instead of configurable gains,
there should be a configurable Q-matrix value which is also in the format Q16.16.

The data acquisition array in the Puck is also able to be exported to the PC via the property
command. One way to accomplish this is by setting property 101 to 1, after torque mode
(property 8, value 2) has been initiated. Executing this command will cause a step input to the
motor, which will be recorded for a 1000 samples at the commutation rate of the motor. Then, if
one calls property 102 a thousand times, and saves each value received, the values will recorded
into the data array will be read out of the Puck and may be stored in an array on the user’s PC.
In addition, instead of setting property 101 to 1, one could also set property 40 to 1. This will
begin the data acquisition process in the puck. However, if property 40 is used instead of
property 101, one must execute the torque or position commands through the set property
command in a C-file. This works best if code is executed in a real time operating system, such
as XENOMAI.

REFERENCES:

http://www.embedded.com/story/OEG20010529S0118

http://www.innovatia.com/software/papers/kalman.htm

http://www.techsystemsembedded.com/Kalman.html

http://www.mathworks.com/matlabcentral/fileexchange/loadCategory.do : An
Intuitive Introduction to the Kalman Filter by Alex Blekhman.

http://www.mathworks.com/matlabcentral/fileexchange/loadCategory.do
http://www.techsystemsembedded.com/Kalman.html
http://www.innovatia.com/software/papers/kalman.htm
http://www.embedded.com/story/OEG20010529S0118

