
Estimating Angular Acceleration from Magnetic Encoder Measurements

Introduction and Motivation

In  many  control  applications,  accessibility  to  all  three  states  of  motion  –  position, 
velocity, and acceleration – can allow for greatly improved system responses.  By placing gains 
on the feedback path of each state, a controls engineer can create an optimized control law by 
selecting the best location for the system’s dominant poles.  In many cases, such a controller, 
which often happens to be a linear-quadratic regulator, can provide the engineer with a simple 
yet elegant  means of controlling an extraordinarily  complex plant.    In addition to full  state 
feedback,  the availability  of velocity  and acceleration values can also aid in numerous other 
controls endeavors, such the identification of various inertias through acceleration measurement. 
For  these  reasons  and  many  others,  it  is  important  to  provide  a  motor’s  user  with  reliable 
acceleration and velocity output.

The Challenge of Acceleration Estimation

By far, obtaining clean acceleration output is the most difficult aspect of achieving full 
state feedback.  Because the position values from the magnetic encoder must be differentiated 
twice, a great deal of noise is injected into the acceleration signal.  In most cases, a simple filter 
could  achieve  reasonable  velocity  output,  since  the  noise  contribution  from  a  single 
differentiation is somewhat minimal.  Therefore, the focus of this research endeavor will be to 
obtain reliable acceleration values.

An example of twice differentiated position data obtained via magnetic encoder
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Weighted Linear Regression

One of the first techniques attempted in the effort to achieve the estimation of the motor 
shaft’s velocity and acceleration was Weighted Linear Regression.  

The method to formulate running linear regression is as follows:

    Define the instantaneous position to be a parabola of the form,

where the acceleration is assumed to be constant over a given window of points.   In the case of 
this experiment, the window size was twenty samples long, the exact number of encoder values 
recorded at a sample rate of 5kHz between every other cycle of the outer 1 kHz control loop.  In 

this equation indicates position,  indicates velocity,   indicates acceleration and  represents 

time.

The goal of linear regression is to approximate the coefficients , , and .  This process 

is started by forming the matrix , which consists i rows of the values 1, , .  In this specific 

case, i is equivalent to 20.

The next matrix essential  to the linear regression algorithm is the matrix  , which is merely 

equivalent to: 

Now, finally, can the measured values p be related to the coefficient matrix , as shown below:

Thus, to solve for , two additional sub-matrixes A and b may be formed:

,

where is a one-dimensional matrix of length i, consisting of tuned weighting factors, and

.

The matrix equations now simplify to  which can be simply solved as .

To compute the A and b matrixes more easily, their formation can be simplified to two 
summations, which are described below:



NOTE: In the above equations, k represents the numbers from 1 to the length of the moving 
window, and both i and j represent the dimensions of the computed matrixes (In this case, 3 and 
3 respectively).

This algorithm was implemented  first  using Octave and then in C.  However,  it  was 
found that this algorithm was too computationally intensive and yielded too poor of results to be 
the best  way to obtain accurately estimated acceleration data.   See “linear_regression.m” for 
Octave implementation and test trials.  The c-code has also been included (linear_regression.c) 
but may not be suitable for compilation.  Furthermore, one may also try adjusting the weights in 
the linear regression file.  It is important to notice that the weights provide little difference in 
output acceleration values and tuning all twenty weights by hand is an extremely tedious process. 

Note:  For all  figures depicting acceleration,  green circles represent the simply filtered 
(FIR) accelerations as shown in the Octave testfiles, and the blue plots represent the results of the 
given acceleration estimation algorithm.

Linear Regression Algorithm: Step Input
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Linear Regression Algorithm: Medium Frequency Square Wave Input

Linear Regression Algorithm: High Frequency Square Wave Input
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FIR and IIR Filtering

After  the  weighted  linear  regression  proved  to  be  unsatisfactory,  a  second  method 
involving digital filtering was investigated.  

The simplest method of digital filtering involves the use of a moving average filter.  A 
moving average filter is a FIR (finite impulse response) filter whose coefficients are all equal to 
one.  The only difference between an averaging filter and an FIR filter is that the coefficients in 
the general FIR filter are allowed to vary to achieve better performance.  

In explaining the FIR filter, it is easiest to describe the algorithm itself, which consists of 
a single, moving summation.  In the discrete domain, the filter can be described as,

where …  are the filter coefficients, y is the output, x is the input and N is the filter order. 

There are many benefits to the FIR filter.  The first benefit is that the filter can be implemented 
very easily in software with a simple code.  Another benefit is that the phase response varies 
linearly with increasing order, which leads to decreased delay and improved delay prediction.  In 
this investigation, two FIR filters were placed in cascade to improve the performance of the FIR 
filtering technique. Although this action increases the delay of the acceleration signal slightly, it 
does not seem to impede on overall performance.  

To carry out filter design, MATLAB has a built in command “fir1”, which allows one to 
receive a set of FIR filter coefficients from the parameters cutoff frequency and filter order.  The 
specific  code  used  for  filter  design  in  MATLAB  is  contained  in  the  MATLAB  only  file, 
“filters_matlab.m”.  In this investigation, a filter order of 20 was selected along with a cutoff 
frequency  ratio  of  0.02  (cutoff  frequency  divided  by  twice  the  sample  time,  i.e.  (50Hz/
(2*5kHz))).  The plot below depicts the Magnitude and Phase response of the designed 20 th order 
FIR filter.  Notice how the phase decreases linearly with increasing frequency.



   Once designed, the FIR filter was implemented using real data in Octave. The results of this 
implementation  are  shown  in  the  plots  below.   It  is  important  to  note  that  the  double 
differentiation takes place before the filtering in an effort to eliminate the possibility for overflow 
(acceleration values are typically much smaller than position values).   Preliminary tests reveal 
that an extremely high order filter is needed to output reasonable acceleration values.  In addition 
to increasing delay, a high order filter requires a significant amount of storage, especially when 
the integers being used are 32 bits in length.  One can also observe the increased delay with 
increasing frequency.  For these reasons, the FIR filter was implemented in C-code on a DSP, 
but only to provide velocity output.    See “fir.m” to examine the Octave implementation of the 
FIR filter.  “FIR.C” in the DSP subfolder implements the FIR filter in C.



FIR Filter: Step Input

FIR Filter: Medium Frequency Input
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FIR Filter: High Frequency Input

The second digital filter investigated for the purpose of extracting acceleration data was 
the IIR (infinite impulse response) filter.   The IIR filter differs from the FIR filter in that it not 
only takes into consideration the input to the system, but it also considers the past filter outputs. 
The difference equation for the IIR filter is as follows,

where y is the output, x is the input,  …  are the input coefficients  …  are the 

output  coefficients  and  N is  the  filter  order.   Fortunately,  as  in  the  case  of  the  FIR filter, 
MATLAB provides software to design IIR filters.  Because of its extremely smooth frequency 
response, a 4th order Butterworth (MATLAB Command “butter”) filter was designed to filter the 
acceleration data at 50 Hz, which corresponds to 0.02 in the digital domain (50Hz/(2*5kHz)). 
Once the 4th order response was seen to have desirable characteristics, the filter was implemented 
in  C-code as  two cascaded 2nd order  filters.   By cascading  the  filters,  one helps  reduce  the 
occurrence  of  massive  integer  overflow.   Although the  Butterworth  filters  seemed to  be  an 
excellent solution for obtaining acceleration data from position measurements, it was soon found 
that  they created  a significant  amount  of signal delay at  higher  frequencies  (phase increases 
exponentially with increasing frequency) and created a much more rounded response, getting rid 
of not only the high frequency noise but also the high frequency changes in acceleration which 
could be important in more advanced controls situations.  The magnitude and phase plot of the 
Butterworth filter can be seen in the plots below.  Notice how the phase increases exponentially 
with increasing frequency.
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Once the Butterworth filter  coefficients  were obtained,  the filter  was  implemented  in 
Octave.  The results of this analysis of can be found in following plots, which were generated by 
running the file “bw.m” in Octave.  The filters themselves have been implemented in the file 
BW.C.
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Butterworth Filter: Step Input

Butterworth Filter: Medium Frequency Input

Butterworth Filter: High Frequency Input
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Kalman and Alpha-Beta-Gamma Filtering

The final attempt to extract acceleration data from the magnetic encoder measurements 
involved the implementation of a Kalman/Alpha-Beta-Gamma Filter.   The Kalman filter  is a 
recursive filter which uses a model and collected data to estimate the actual values of the states 
occurring in a given system.  The Kalman filter hinges on the fact that the values of the states lie 
somewhere between the model values and the measured values, and tries to pinpoint the location 
of these state values through probabilistic and optimal methods.   

Before beginning the explanation of the Kalman filter, a review of discrete state space 
will be attempted.  Note:  All of the following work assumes linear systems.

All linear systems can be represented in the form,

Where x[k] represents a marix of current state values, x[k-1] represents the previous state values, 
u[k] represents the current  input,  Ak and Bk are  matrixes  which represent  the model  of the 
system, Ck determines which of the states, and Dk is zero.  As the system moves through time, k 
increments during each sample, yielding a new current set of states that can be derived from the 
previous states and the current input.  

To  describe  the  Kalman  filter  itself,  it  is  best  to  begin  with  an  explanation  of  the  various 
matrices.

First one must define  (mxn) and  (mx1) which define the state transition for the system.

Then, one must define the P matrix, which is the error/confidence matrix.  This matrix will help 
determine whether more weight goes to the model or more weight goes to the measurement 

value.   It has the same dimensions as the matrix   (mxn),  and oftentimes,  the P matrix  is 

initialized  with  some  constant  value  along  the  diagonal.   Occasionally,  this  constant  value 
corresponds to the covariance of the model, but many times this matrix can be left full of zeros, 
since this matrix will change during the Kalman filter cycle.  

The next matrix to be defined is Q.  The Q matrix, which also has the same dimensions as 

(mxn), represents the process noise covariance.  The Q matrix represents errors present in the 
model, and will give either a higher or lower “weight” to the measured data.  Usually the values 
of the diagonals can be tuned to provide the desired response.

The matrix   (1xm) determines which of the states is compared to the measured value, and 

corresponds directly to the  matrix in the state space representation.



The value R (typically 1x1) represents the measurement noise covariance.  This value will often 
vary from one sample to  another,  and can be computed by squaring the value of a running 
standard deviation.  In the case of this report, R was assumed to be a fixed value, and because the 
magnetic encoder is fairly accurate, this assumption seemed to work well.  When readings are 
less  accurate  it  may  be  advantageous  to  compute  a  running  covariance  of  the  incoming 
measurement data. 

 Now that all the primary matrixes have been defined, the Kalman filter equations can be 
explored.

The first four equations are used solely to find the Kalman gains,

Where K (mx1) is a matrix a matrix of Kalman gains, S (1x1) is an intermediate matrix, and P1 
(mxn) is an intermediate matrix.  The actual measurement values have an impact on the 
formation of the Kalman gains only if the measurement noise covariance change is taken into 
consideration.   The final equation in the above set only seeks to iterate the values of P.

The next two equations of the Kalman filter deal with the model of the system and the Kalman 
gains determined in the previous steps.   

Note: In the above equations, Z represents the measured values, and ERROR represents the 
difference between the predicted value and the measured value. 

Originally a three state Kalman filter was implemented in Octave and then in C-code.  However, 
due  to  overflow issues,  the  filter  was  eventually  reduced  to  a  two state  system.   This  was 
accomplished by a simple differentiation and filtering of the incoming position data to yield 
velocity input.  A system was then developed to relate velocity and acceleration in the DC motor, 
and then used in the Kalman filter.  Many Kalman filters  and Alpha-Beta-Gamma filters  are 
demonstrated  in  the  Octave  m-files.   The  files  “kalman_without_model.m”  and 
“alpha_beta_gamma_without_model.m”  demonstrate  the  implementation  of  both  filter  types 
where only the constant acceleration equations of classic physics are used to guide the filter.  The 
files “kalman_with_model.m” and “alpha_beta_gamma_with_model.m” demonstrate the use of a 



third order model (three states) which relates the position of the motor to the torque input.  The 
files “kalman_with_model2x2.m” and “alpha_beta_gamma_with_model2x2.m” implement only 
the second order model  (two states)  which relates  velocity  to the torque input to the motor. 
Although a three state Kalman filter was implemented in c-code using 64-bit computation, this 
was not the final version implemented on the DSP since it proved to be too computationally 
intensive.  Instead a simpler, two state Kalman filter was implemented in c-code and executed on 
the DSP.  These two c-files can be found in “kalman.c”, “kalman_reborn.c” respectively.  In the 
DSP,  the  file  “KALMAN.C”  only  implements  an  alpha-beta  filter,  whereas  the  file 
“KALMAN2.C” actually implements the full Kalman filter algorithm. 

As seen below, the results of Kalman filtering proved to be very successful give a reasonable 
model. 

Alpha-Beta-Gamma Filter without Model: Step Input
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Alpha-Beta-Gamma Filter without Model: Middle Frequency Torque Input Square Wave

Alpha-Beta-Gamma Filter without Model: High Frequency Torque Input Square Wave
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Kalman Filter without Model: Step Input

Kalman Filter without Model: Middle Frequency Square Wave
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Kalman Filter without Model: High Frequency Square Wave

Alpha-Beta-Gamma Filter with Model: Step Input
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Alpha-Beta-Gamma Filter with Model: Middle Frequency Square Wave Input

Alpha-Beta-Gamma Filter with Model: High Frequency Square Wave Input
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Kalman Filter with Model: Step Input

Kalman Filter with Model: Middle Frequency Square Wave Input

Sample Time (1/5000 
seconds)
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Kalman Filter with Model: High Frequency Square Wave Input

Alpha-Beta-Gamma Filter with Model: Step Input, Velocity Measurement
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Alpha-Beta-Gamma Filter with Model: Middle Frequency Square Wave Input, Velocity Measurement

Alpha-Beta-Gamma Filter with Model: High Frequency Square Wave Input, Velocity Measurement
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Kalman Filter with Model: Step Input, Velocity Measurement

Kalman Filter with Model: Middle Frequency Square Wave Input, Velocity Measurement
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Alpha-Beta-Gamma Filter with Model: High Frequency Square Wave Input, Velocity Measurement

FINAL IMPLEMENTATION (C-CODE, FIXED POINT)

Kalman Filter with Model: Step Input, Velocity Measurement, Fixed Point C-code
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Kalman Filter with Model: Middle Frequency Square Wave Input, Velocity Measurement, Fixed Point C-code

Kalman Filter with Model: High Frequency Square Wave Input, Velocity Measurement, Fixed Point C-code
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System Identification

Fortunately, in most situations, the model of a DC motor can be approximated as a first order 
linear system.  Whether torque controlled or position controlled, most motors will reach a steady 
state velocity under some step input.  If the transient velocity rise time can be captured in data, 
then one could easily use the properties of a first order system to obtain an approximate model.

Since we know that a first order system has the form,

where Y(s) is the output, X(s) is the input, J is the overall inertia of the system and b overall is 
the damping of the system.  Note: J and b do not refer merely to physical inertia and damping, 
but also encapsulate the motor’s electrical properties as well.

To determine b, one must merely examine the steady state speed and the value of the input.  The 
equation for finding b is,

where X is the input (mA in this specific case) and  is the steady state speed.

To find J, all one needs is a value for the first order time constant, which is the time value at 63% 
of the steady state speed.  

Once the time constant is obtained, J is found through the equation:

Now, since we measure position, not acceleration, an integration term must be added to force the 
output of the system to become position.  A revised first order model, where V(s) represents 
velocity and T(s) represents applied torque, is shown below:

Integrating velocity to obtain position is carried out as follows:



In the previous equation, X(s) represents position.

To achieve a state space representation, the transfer function above must be converted from the 
frequency domain to the time domain.

Before proceeding to create a state space system, it is important to realize that the system above 
is only second order.  To have access to the state of velocity, a third order differential equation is 

needed.  This can be obtained by perturbing the third derivative of position, .

Now, that a third order differential equation has been created, state space formation can take 
place.  The variable k can be selected as an arbitrary small value so that it only slightly changes 
the system’s response.

If a full state feedback system were to be designed, the above model would be sufficient.  If the 
design  method  will  only  involve  root  locus  or  frequency  domain  techniques,  the  transfer 
function,

would be sufficient.

If, instead of for control design, a Kalman filter observer was desired, the state space model 
above would need to be discretized.  This is easily accomplished in a program like MATLAB or 
Octave  and can  be  carried  out  in  “make_model.m”.   Plots  of  actual  collected  data  and the 



corresponding model are shown below. The green curves represent the model, whereas the blue 
curves represent actual data (or differentiated and filtered data).
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  Adjust the values for J and b to correspond to the values output by the DSP and record the 
discrete transfer function values.  Note: It is important to use a zero order hold to discretize the 
system.  Both MATLAB and Octave accomplish this by numerically determining the matrix 
exponential of the A and B state space matrixes. Methods such as Tustin are not typically exact 
enough for this filtering application.  

To relate  velocity  to  the torque input  command,  as  is  done in the C-code,  one must 
merely change the state space representation as follows:

Furthermore, when rounding the values in the state space matrix for implementation in the C-
code, it is important to remember that in the discrete 2x2 A-matrix, the first element must not be 
rounded to one.  It is important that this value is set to be close to the actual floating point value 
of the first element in the discretized matrix (i.e. 0.99=> 127/128).  Values which are close to but 
not equal to one must be maintained as such to prevent instability.

Operation in Firmware Code

In the firmware, the filters and model generation code are accessed using several key firmware 
parameters. 

To select a filter, use property X2.  Setting X2 to 1, filters velocity using a 2nd order Butterworth 
filter.  Setting X2 to 2, filters acceleration using a 4th order Butterworth filter.  Setting X2 to 3 
filters acceleration using a 4th order Butterworth filter and velocity using a 2nd order Butterworth 
filter.  This feature, although desirable, still has a bug which must be worked out.  Setting X2 to 
4,  filters  velocity  with  a  20th order  FIR  filter.   Setting  X2  to  5,  filters  both  velocity  and 
acceleration using a Kalman filter.

Note:  The  Butterworth  filter  coefficients  could  easily  be  created  as  parameters  able  to  be 
accessed from outside the DSP.  This could also be done for the FIR coefficients, but at least 10 
additional properties would be needed.

Both the FIR filter  and the Butterworth filter  use coefficients  in Q22.10 format.   Velocity is 
output in the same format, whereas acceleration values are output in Q14.18 format.

To determine a given motor’s model, set property PLOG (101) to 2.  This will apply a step input 
of 500 mA to the motor, and fit a first order model to the velocity curve.  The coefficients J and b 
as  discussed  in  this  document  will  be  output  to  properties  X0 and X1 respectively.   These 



coefficients  can then be used as previously mentioned to design a controller  or to design an 
observer as used in the Kalman filter.  

 The Kalman filter, because of the need to eliminate overflow in the intermediate calculations 
while maintaining a reasonable accuracy, is slightly complicated to modify.  After a 2x2 discrete  
A matrix and a 2x1  discrete B matrix are determined using the provided Octave code, these 
parameters must be added into the Kalman filter code.  In the Kalman filter without automatic 
gain tuning (i.e. alpha_beta filter), the A and B matrix values are represented with a numerator 
and a denominator.  The denominator is required to be a power of 2 and the numerator is some 
integer  value,  which  when  divided  by  the  denominator,  approximates  the  fractional  values 
present in the A and B matrixes.  Since the top left value in the A matrix will have the largest 
value, this value will be what determines the maximum velocity input value before overflow.  If 
the velocity is scaled up by 2^18 to provide adequate acceleration resolution, then it is important 
to regulate the numerator of the first value in the A matrix allows for ample velocity input.  For 
example, the maximum value for the a11 numerator is 2^7 which leaves 2^6 encoder counts per 
commutation  loop (2^(31-7-18))  available  for  maximum velocity  input.   This  velocity  value 
equates to 78 rev/s.   If the Kalman filter with automatic gain tuning is used, then additional 
values for the A matrix numerator must be provided for the automatic gain tuning operations. 
These special A matrix numerator values all must be in Q16.16 format.

In the case of the Kalman filter with the manually tuned gains, the 4 values in the A matrix and 
the 2 values in the B matrix should have their numerator and denominator values as configurable 
properties.  The  two  gains  should  also  have  their  numerators  and  denominator  values  as 
configurable properties.  In the case of the Kalman filter with the automatically tuned gains, the 
A and B matrixes should have their numerator and denominator values as configurable properties 
as well as the special Q16.16 values for the Q16.16 A matrix.  Instead of configurable gains, 
there should be a configurable Q-matrix value which is also in the format Q16.16.

The data acquisition array in the Puck is also able to be exported to the PC via the property 
command.   One way to  accomplish  this  is  by setting  property  101 to  1,  after  torque  mode 
(property 8, value 2) has been initiated.   Executing this command will cause a step input to the 
motor, which will be recorded for a 1000 samples at the commutation rate of the motor.  Then, if 
one calls property 102 a thousand times, and saves each value received, the values will recorded 
into the data array will be read out  of the Puck and may be stored in an array on the user’s PC. 
In addition, instead of setting property 101 to 1, one could also set property 40 to 1.  This will 
begin the  data  acquisition  process  in  the  puck.   However,  if  property  40 is  used instead  of 
property  101,  one  must  execute  the  torque  or  position  commands  through  the  set  property 
command in a C-file.  This works best if code is executed in a real time operating system, such 
as XENOMAI. 
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