Barrett P3 Controller GUI Manual

P3 Controller GUI Manual
About the GUI:
The Controller GUI is a wxPython application designed to configure and control actuators based on Barrett’s P3 motor controller.
Installation:
Run the installer executable wxPuckInstaller_v602.exe by double-clicking on it. You will see a screen as in Figure 1. Follow the instructions listed. On the Choose Components Page you will want to verify that the Peak PCAN Driver box is checked. This will launch the installer for the PEAK CAN to USB adapter which is required for proper operation.

[image: image1.jpg]
This is the only step which is required to install the program. Once the installation is done the installer will restart from the beginning, cancel at this point.

The program will be installed to “C:\Program Files (x86)\Barrett Technology\wxPuck” and will show up in the start menu as “Barrett Technology\wxPuck”.

Launching:

Connect the actuator to power and CAN.

From the start menu launch wxPuck. You should see the screen in Figure 2:

Basic Operation:

[image: image9.png]
Figure 2
To initialize the CAN device and enumerate the bus to make a list of available pucks, click the “Initialize CAN” button near the upper left of the window. The status bar at the bottom will show the status of the initialization. After enumeration is complete, if there is only one available puck, it automatically selects that one as the “Active Puck”. You can click the “Reinitialize CAN” button at any time to update the list of available pucks on the bus.
If the actuator was configured to home itself automatically upon startup, or if you do not wish to home the actuator, press the “Skip Homing” button. This will enable the rest of the GUI, as seen in Figure 3:

[image: image2.jpg]
Figure 3
If you leave the Waveform Characteristics at their defaults then press “Create Waveform”, the program will generate a waveform called “wave_pos_sin” which is a sinusoidal position waveform with a frequency of 0.5 Hz, an amplitude of 1000 (scaled) counts, and a Y-offset (bias) of 2000 (scaled) counts.

The full position range of the actuator after homing can be commanded by giving values between 0 and 4095. Therefore, this position waveform will start near the center of the actuator’s range (2000), then it will apply a sinusoidal waveform with amplitude 1000 at a frequency of 0.5 Hz (a period of 2 seconds).

The data is always streamed to the actuator at 30 Hz.

Once the waveform has been generated, select it from the “Waveforms” list, then press the Play button. See Figure 4:

[image: image3.jpg]
Figure 4
The actuator should start moving in a sinusoidal pattern.

By default, the position control bandwidth is set pretty high for the relatively slow update rate of 30 Hz. Therefore, the actuator tends to reach the commanded position before an updated position is sent by the GUI. This results in somewhat choppy motion. To smooth out the motion, select the “Control Bandwidth” tab, then lower the Position Bandwidth from 5 Hz to 1 Hz. This should smooth out the actuator’s motion. See Figure 5:

[image: image4.jpg]
Figure 5
You can pause the motion by pressing the Pause button. You can adjust the Waveform Characteristics in the left-most panel, then press “Create Waveform” to add your new waveform to the “Waveforms” list. Double-click your new waveform to activate and play it.

Congratulations, you have completed the initial walk-though of the Controller GUI!

Launching The Joystick Demo:

To start the Joystick Demo you must first have a USB HID Joystick attached to the computer being used. This will activate the Start Joystick Demo button as seen in Figure 6. Once you press this button it will now read Stop Joystick Demo and to stop the demo press the button again. While in the joystick demo you will not be able to use the waveform generator functions. If you are running the waveform generator function and start the joystick demo it will end the waveform generator and start running the joystick demo.
[image: image5.png]
Change CAN ID of Active Puck:

[image: image6.png][image: image7.png]
To change the CAN ID of the active puck select the Tools Menu Item and then the Change CAN ID option.

[image: image8.png]

Now you should be able to change the CAN ID as in Figure 8. The application will ask you to confirm that you want to do this. Please note that changing the CAN ID has potential to create errors on the CAN bus and most of these problems can be solved by cycling power and restarting wxPuck. After the CAN ID is changed wxPuck will restart and enumerate the CAN bus.

Updating The Firmware:

To update the firmware on a P3 wxPuck can be used. To open the Firmware Loader panel select Tools >> Update Firmware. This will bring up the dialog in Figure 9. To load firmware select the Puck CAN ID and use the Browse button to select the proper firmware .bin file. Once this is done press Program Firmware, wxPuck will continue to program the new firmware onto the P3; however, it is important to load known working firmware, and be careful about not disconnecting the CAN bus, or cycle power during this operation.

When the programming is successful you will be asked to cycle power to the puck, to load the new firmware, and then reinitialize the CAN bus.
Loading a CANOpen Configuration:

To load a CANOpen configuration using the wxPuck GUI select Tools >> Configure CANOpen (Ctrl-0). You will then be prompted to select a .csv file. This file should be your csv file such as the example file in Figure 10. The instructions in that file will then be executed and your CANOpen node will be configured. The configuration is open loop and additional monitoring can be carried out with PCAN-View to validate the results of the CANOpen configuration. This is planned to change in a future upgrade.
	Figure 10: Example CANOpen .csv file (default_config.csv)

	type,index,subindex,length of data,data,comment

SDO,0x1005,0,4,0x080,'Set Sync COB ID'

SDO,0x1017,0,2,1000,'Set Heartbeat period in ms'

SDO,0x1400,1,4,0x200 + nodeID,'Set the RPDO 1 COB ID'

SDO,0x1400,2,1,0xFF,'RPDO Rx type'

SDO,0x1600,1,4,0x60A00010,'RPDO mapping'

SDO,0x1600,0,1,1,'RPDO mapping, number of mapped objects (0-4)'

SDO,0x1800,1,4,0x180 + nodeID,'Set TPDO COB ID'

SDO,0x1800,2,1,0,'Set TPDO TPDO Tx type’

SDO,0x1800,3,2,0,'Set TPDO inhibit time in multiples of 100 uS (not implemented)'

SDO,0x1800,5,2,0,'Set TPDO event timer in ms'

SDO,0x1A00+0,1,4,(0x60A1<<16) | (0<<8) | (16),'Set TPDO1 Mapping 1 =ScaledPosition'

SDO,0x1A00+0,2,4,(0x2201<<16) | (0<<8) | (16),'Set TPDO1 Mapping 2 = Bus Voltage'

SDO,0x1A00+0,3,4,(0x2202<<16) | (0<<8) | (16),'Set TPDO1 Mapping 3 = Temperature'

SDO,0x1A00+0,4,4,(0x1001<<16) | (0<<8) | (8),'Set TPDO1 Mapping 4 = Error'

SDO,0x1A00+0,0,1,4,'Set TPDO1 Mapping Num = 4'

SDO,0x1A00+1,0,1,0,'Set TPDO2 Mapping Num = 0'

SDO,0x1A00+2,0,1,0,'Set TPDO3 Mapping Num = 0'

SDO,0x1A00+3,0,1,0,'Set TPDO4 Mapping Num = 0'

SDO,0x1010,1,4,0x65766173,'Save All Changes to the Object Dictionary (to EEPROM)'

The CANOpen .csv file configuration follows the following format:

It is a comma separated value format with ‘ based quote characters. Leading and trailing spaces are stripped in fields, there are 5 to 6 columns with the 6th column being a comment column. The columns are ordered as such: type, index, subindex, length of data, data, column.

Type: The type of message which effects how the remained of the columns are interpreted. Valid values are SDO.

Index: The index of the CANOpen object entry.

Sub Index: The sub index of the CANOpen object entry

Length of Data: The length of the data field in bytes. Valid values are 0-4.

Data: Data to be sent.

Each line (besides type and comment) are kept as strings and parsed using the python module numexpr before sending the data. All of the inputs must be valid python mathematical expressions which use constant values, aside from the variable nodeID which contains the ID of the node being programmed.

Before running the configuration, the CAN node is sent the CANOpen NMT PRE-OP message. After the configuration is done the program sleeps for 500ms and resets the CANOpen node so it is in BarrettCAN again and can talk to the wxPuck GUI.

�Figure � SEQ "Figure" * ARABIC �1�: wxPuck Installer

�Figure � SEQ "Figure" * ARABIC �6�: Start Joystick Demo

Figure � SEQ "Figure" * ARABIC �7�: Change CAN ID Menu Selection

�Figure � SEQ "Figure" * ARABIC �8�: Change CAN ID

�Figure � SEQ "Figure" * ARABIC �9�: Firmware Update Panel

Page 9 of 9

