BarrettHand

Version 4.0

C-Function Library Manual

[image: image1.png]
[image: image2.png]

Table of Contents

2List of Tables

List of Equations
2
1
Introduction
3
2
Functional Organization
4
2.1
Low-level Processing
5
2.2
Intermediate-level Processing
5
2.3
High-level Processing
6
3
Using the Library
8
3.1
Installation
8
3.2
User Functions – Supervisory Mode
9
3.2.1
Overview of Supervisory Mode
9
3.2.2
Supervisory Mode Commands
12
3.3
User Functions – RealTime Mode
29
3.3.1
Overview of RealTime Mode
29
3.3.2
RealTime Mode Commands
31
3.4
Serial Communication Functions
40
3.5
C Library Variables
46
3.6
Firmware Parameters
49
3.7
Status Codes
55
3.8
Version 1.0 Library Compatibility
57
4
Example Programs
59
4.1
Supervisory Mode Example: Supervisory.cpp
59
4.2
RealTime Mode Example: RealTime.cpp
62
Appendix A Bhand.h
67
INDEX
71

List of Tables

3Table 1 - Library and Firmware Compatibility

Table 2 - RealTime Control Parameters
29
Table 3 - BarrettHand Status Codes
55
Table 4 - Library Status Codes
56

List of Equations

9Equation 1 - Velocity Conversion

Equation 2 - Velocity Control
10
Equation 3 - Trapezoidal Profile Control
10
Equation 4 - Acceleration Conversion
11

1 Introduction

This documentation describes the BarrettHand Version 4.0 C-Function Library, providing a user program interface to the BarrettHand. This Library is compatible with Firmware XE "Firmware" Version 3.0 and 4.02. The Library is compiled for Windows 95/98/NT. The C-Function Library Version 4.0 includes new RealTime commands, as well as some new Supervisory commands introduced with the Firmware Version 4.02. It is a typical C++ library, providing a class BHand, XE "BHand" from which you derive one object and use it for all communications with the hardware. C-Function Library Version 4.0 is backward compatible with code written for the C-Function Library Version 1.0. It performs an implicit translation of the old commands into the new format, so you can recompile and link existing DOS programs. Refer to Table 1 for Library and Firmware compatibility.

Table 1 - Library and Firmware Compatibility

Library Version
Firmware Version

Version 1.0 C-Function Library
Firmware Version 3.0

Version 4.0 C-Function Library
Firmware Version 4.02 and 3.0

The C-Function Library Version 4.0 uses a sophisticated multithreaded XE "Multithreading" mechanism for accessing the serial port, which allows both synchronous and asynchronous control of the low-level thread and ensures that all serial communications are executed with high priority. The multithreading mechanism replaces the interrupt-driven processing from C-Function Library Version 1.0. Some of the more advanced features require an understanding of how this mechanism works, but for using the basic functions of the Library, such understanding is not necessary. Describing the basics of multithreaded processing is beyond the scope of this document – we refer the reader to the extensive documentation provided with the Windows API on the Web.

The following documentation contains three sections:

1. Section 2 describes in detail the functional organization of the software, the most important aspects of its operation, and the functions that provide the basic services used by the rest of the Library.

2. Section 3 contains a list of the Library functions and documentation of their syntax, purpose, inputs and outputs.

3. Section 4 contains example programs that you should find helpful.

2 Functional Organization

The Version 4.0 Library is organized into three layers of processing: low, intermediate and high-level:

1. The low-level XE "Low-level" processing is responsible for actual communication between the BarrettHand and the host computer. This level runs in a separate thread with the highest priority XE "Thread priority" . It is idle in the absence of communication requests (without consuming CPU time), and is only activated when characters need to be sent and/or received.

2. The intermediate-level XE "Intermediate-level" processing provides a uniform interface to the programmer for sending and receiving characters. Rather than executing the actual serial data exchange, this level places communication requests to the low-level, and optionally waits for their completion. This level is used by all high-level functions to communicate with the hardware.

3. The high-level XE "High-level" processing contains the functions that the user program normally calls (unless you wish to access the lower-level mechanisms directly). These functions allow you to control the hand without having to manage the serial communication.

The design goal behind this layered organization is the following: the low-level processing allows the serial data exchange to have priority over all other tasks, such as refreshing windows, disk read/write, or other user program processing. Delays XE "Delays" are minimized and no characters are lost between the host computer and the BarrettHand. At the same time we do not want the user program to run with high priority, because it will execute many other operations unrelated to serial communication, running all of them with high priority. This would significantly increase the response time of the operating system.

The intermediate-level processing provides both synchronous XE "Synchronous" and asynchronous XE "Asynchronous" communication modes for user programs, allowing you to send commands to the BarrettHand and have the option to wait for a response or continue with the program. This is not possible with standard Windows serial port function calls, since they require you to decide which mode will be used at the time of initializing the serial port. The high-level processing uses the functionality of both the low-level and intermediate-level processing. This allows the host computer to communicate with the BarrettHand successfully with minimal delays in the response time of the system.

The remaining part of this section describes the three levels in bottom-up order. It closely follows the structure of the class Bhand declaration, found in the header file Bhand.h, see Appendix A.

2.1 Low-level XE "Low-level" Processing

Low-level processing is the communication between the BarrettHand and the host computer. This level is transparent, but is included so that you can better understand the Library. This process runs in a separate thread XE "Multithreading" and is given the highest priority XE "Thread priority" . The following function controls the serial communication:

DWORD _stdcall _ComThreadFunction(void* pHand)

It is started during the initialization XE "Initialization:Software" phase and contains a single loop, which detects communication requests and executes them. The synchronization between the low-level and the user program thread (containing the two higher levels) is accomplished using the Windows event objects requestPending XE "Windows event objects:requestPending" and requestComplete XE "Windows event objects:requestComplete" . Briefly, the thread function is blocked until the user program signals requestPending, at which point the thread function writes data to the serial port and waits for a response. The expected response is determined by the request type (one of BHREQ_REALTIME XE "Request type:BHREQ_REALTIME" , BHREQ_SUPERVISE XE "Request type:BHREQ_SUPERVISE" , BHREQ_EXIT XE "Request type:BHREQ_EXIT" , or BHREQ_CLEAR XE "Request type:BHREQ_CLEAR"). When request processing is finished, the thread function signals requestComplete and blocks its execution until the next request is detected.

Immediately before the end of processing the request, the thread function calls an optional user-supplied callback function, which can perform a desired periodic activity. Keep in mind that the callback function XE "Callback function" is executed with high priority and it should not be computationally intensive. To specify a callback function, set the pCallback XE "Variables:pCallback" pointer to its address.

Windows maintains a set of serial timeout parameters XE "Serial port timeout parameters" (in milliseconds) which determine how long serial port functions should wait before returning with a timeout error. These parameters are set to default values during the initialization of the Library, but you can modify them at any time using the (intermediate-level) function ComSetTimeouts XE "Serial Communication functions:ComSetTimeouts" .
Note that the timeout values affect the behavior of the low-level processing thread only. The high-level user functions provide a separate timeout mechanism specifying how long the user program (in synchronous mode) should wait for the low-level thread before it resumes execution.

2.2 Intermediate-level XE "Intermediate-level" Processing

The functions and variables relevant here are listed in Section 3.4 and the Serial Communications section of the header file, BHand.h. Together with the low-level processing thread described in Section 2.1, they represent a self-contained module that can be used to communicate with the hand without ever calling the high-level functions. Even if you intend to use the high-level functions described in Sections 3.2 and 3.3, understanding the material in this subsection is necessary to use some of the more advanced mechanisms provided by the Library.

Note that each function in the Library returns an integer status code XE "Status codes" . Therefore, if the BarrettHand command returns a value, the Library function will require a pointer to the return value passed as a parameter. A return value of zero indicates successful completion. Positive status codes are sent by the firmware; the Library generates negative status codes. See Section 3.7 for more information on status codes.

The intermediate-level processing allows you to control the host computer more closely. These functions perform the following:

· Initialize the communications port XE "Communication port:Initialization" , set the timeout parameters XE "Serial port timeout parameters" and change the host computer communication rate.

· Request the low-level thread that clear the communication buffer XE "Buffers" , send and receive data stored in buffers and exit the low-level loop.

· Read XE "Communication port:Read" from or write XE "Communication port:Write" to the communications port.

· Set the user program to be synchronous or asynchronous control with the low-level thread.

For a complete list and description of commands, refer to Section 3.4.

2.3 High-level XE "High-level" Processing

The remaining functions are the high-level functions called in the user program to control the hand. The functions in this section have a common structure: they fill the output character buffer with the appropriate ASCII XE "ASCII" commands for the hand, and place a request to the low-level thread (using ComRequest). If a value is returned, the output from the hand is interpreted accordingly.

High-level processing allows you to control the hand via a set of standard functions. These functions perform the following:

· Initialize the communications port XE "Communication port:Initialization" .

· Initialize the BarrettHand XE "Initialization:BarrettHand" (resets parameters and aligns encoders and motors).

· Issue standard open and close commands for individual or multiple motors.

· Move individual or multiple motors to different positions.

· Terminate control of individual or multiple motors XE "Motors:Control" .

· Set or Get motor parameters XE "Motors:Parameters" .

· Load and save desired or default motor parameters to the EEPROM.

· Get BarrettHand temperature XE "Temperature" and communication rate.

· Send any set of characters to the BarrettHand.

· Allow control of the hand in RealTime mode XE "RealTime Mode" .

The execution of all functions is affected by the settings of the serial port timeouts XE "Serial port timeout parameters" (via ComSetTimeouts XE "Serial Communication functions:ComSetTimeouts" in Section 3.4) and the three variables: syncMode XE "Variables:syncMode" , requestTimeout XE "Variables:requestTimeout" , and pCallback XE "Variables:pCallback" . See Section 3.5 for more information on these variables.

It is possible to use the high-level commands synchronously XE "Synchronous" or asynchronously XE "Asynchronous" by setting the variable syncMode. During synchronous mode, the program will not regain control until the BarrettHand has finished executing the command or the timeout limit has been reached. During asynchronous mode, all user functions will return immediately with result BHERR_PENDING. You can check if the processing has been completed using ComIsPending XE "Serial Communication functions:ComIsPending" , or wait for the processing to complete using ComWaitForCompletion XE "Serial Communication functions:ComWaitForCompletion" . Except for RealTime mode functions, do not use asynchronous mode with functions that return values.

3 Using the Library

The Library consists of two files: BHand.lib and BHand.h. The Library file must be linked to the user program, and the header file must be included in the C++ code. The Library takes advantage of a number of C++ constructs that are incompatible with C; thus, a C++ compiler should be used. However, users can still write their programs in C style, since C++ is a superset of C.

The Library is compiled with Microsoft Visual C++ 6.0. The only functions used are standard Windows API XE "API" functions (i.e. Microsoft Foundation Classes are not used), thus it should be straightforward to recompile the Library with a different Windows C++ compiler if necessary. Contact Barrett Technology if you will be using a different C++ compiler.

The BHand.h file defines the class BHand XE "BHand" . Define a single object of that class, and use it for all hand control. Make sure the object does not go out of scope (i.e. define it as a global variable or in the main function). If the BHand object goes out of scope and is lost, you will have to create and initialize a new one.

Here is an example of a simple program that initializes the hand for COM1, increases the baud rate, and closes all fingers (in practice you should check for status codes):

#include <BHand.h>

void main()

{

BHand bh;

// Declare BHand object, bh

char grasp[2] = "G";
// Defines grasp as "G"

char all[1] = "";
// Defines all as ""

bh.InitSoftware(1);
// initialize the Library, use COM 1

bh.InitHand(all);
// Initialize the BarrettHand

bh.Baud(19200);

// Change the baud rate to 19200bps

bh.Close(grasp);

// Close the Grasp

}

The following sections will explain how to use all of the functions contained in the BarrettHand C-Function Library.

3.1 Installation XE "Installation"

The Library, BHand.lib, and the header file, BHand.h, are needed to use the functions discussed in this manual. Run setup.exe on the disk labeled "C-Function Library Disk 1 of 1" to install the Library files, example programs and a copy of the C-Function Library Manual. When you compile the software, make sure you link both the header file and the Library to the project.

3.2 User Functions – Supervisory Mode

3.2.1 Overview of Supervisory Mode XE "Supervisory Mode"
Supervisory mode allows control of the hand at a high-level XE "High-level" , allowing you to command individual or multiple motors to close, open and move to specific positions. You also have access to all of the parameters listed in Section 3.6. This set of commands is used for most grasping situations. This mode takes advantage of the supervisory capabilities of the Motorola 68HC11. The Motorola 68HC11 controls the BarrettHand motion by supervising a motion control chip, HCTL-1100, for each motor. If real-time control of the motor position, velocity or strain is needed, use the new RealTime control mode described in Section 3.3.

Supervisory mode accepts a command and will not return control of the BarrettHand until the command is finished processing. The hand expects valid commands and will return a status code XE "Status codes" for an invalid command or if another problem occurs. See Section 3.7 for more detailed information on status codes. After executing the command, sending status codes and requested information, the hand will return the command prompt "=>". At this point, you can send another command.

Two different methods are used for controlling individual motors XE "Motors:Control" in Supervisory mode: Velocity Control XE "Velocity control" and Trapezoidal Profile Control. The Velocity Control is used during close and open commands (close() XE "Supervisory Mode commands:Close" and open() XE "Supervisory Mode commands:Open"). The control velocity, in quadrature
 counts per sample time, is 12 bits integer and 4 bits fraction. For example:

100 Control Velocity = 0000 0000 0110 0100 (Binary)

Integer = 0000 0000 0110 = 6

Fraction = 0100 = 4/16 = 0.25

100 Control Velocity = 6.25 quadrature counts / sample time

Use the following equation to determine velocity in revolutions per second:

[image: image3.wmf]t

N

V

V

R

q

*

*

=

Equation 1 - Velocity Conversion XE "Velocity conversion"
Where:

Vq is the velocity in quadrature counts / sample time

VR is the velocity in revolutions / second

N is 4 * (Number of lines in the encoder) = 360 quadrature counts / revolution

t is the sample time XE "Sample time" on the hand electronics = 2.23E-4 seconds / sample time

Velocity Control uses proportional gain XE "Proportional gain" and velocity error XE "Velocity error" to control the motor command, described in Equation 2. When the joint links contact an object or joint stop and have no movement for a pre-specified amount of time, stored in the TSTOP XE "Firmware parameters:TSTOP" parameter, the motors will stop commanding a velocity.

[image: image4.wmf]n

n

Y

K

MC

*

4

÷

ø

ö

ç

è

æ

=

Equation 2 - Velocity Control XE "Velocity control"
Where:

MCn is the motor command output.

K is the proportional gain stored in the variable FPG XE "Firmware parameters:FPG" .

Yn is (Command Velocity - Actual Velocity).

The second method of control is called Trapezoidal Profile Control and is used during move position commands (StepOpen() XE "Supervisory Mode commands:StepOpen" , StepClose() XE "Supervisory Mode commands:StepClose" , GoToPosition() XE "Supervisory Mode commands:GoToPosition" , GoToDifferentPositions() XE "Supervisory Mode commands:GoToDifferentPositions" and GoToDefault() XE "Supervisory Mode commands:GoToDefault"). This mode moves the motor to the desired position and returns a status code if the motor does not reach the position, within +/- the number of encoder counts stored in the parameter MPE XE "Firmware parameters:MPE" . The following equation is used to determine the motor command:

[image: image5.wmf](

)

ú

û

ù

ê

ë

é

÷

ø

ö

ç

è

æ

+

÷

ø

ö

ç

è

æ

÷

ø

ö

ç

è

æ

-

÷

ø

ö

ç

è

æ

=

-

-

1

1

*

256

4

*

256

4

n

n

n

n

MC

B

X

K

A

X

K

MC

Equation 3 - Trapezoidal Profile Control XE "Trapezoidal Profile control"
Where:

MCn is the motor command output.

K is the proportional gain stored in the variable FPG XE "Firmware parameters:FPG" .

Xn is the position at time n.

A is the digital filter zero stored in the variable FDZ XE "Firmware parameters:FDZ" .

Xn-1 is the position at time n -1.

B is the digital filter pole stored in the variable FIP XE "Firmware parameters:FIP" .

MCn-1 is the motor command at time n -1.

The trapezoidal profile is determined by the acceleration XE "Acceleration" and the maximum velocity XE "Maximum velocity" set for the motor. Each motor has a corresponding acceleration stored in the variable ACCEL XE "Firmware parameters:ACCEL" , 8 bits integer and 8 bits fraction. Use the same method for determining the actual acceleration as shown for the command velocity. The acceleration variable determines the rate of change of velocity until the maximum velocity is reached. The default value for ACCEL is 1, or 0.0039 quadrature counts / [(sample time)2]. The following equation can be used to determine the actual acceleration:

[image: image6.wmf]2

*

*

t

N

A

A

R

q

=

Equation 4 - Acceleration Conversion XE "Acceleration conversion"
Where:

Aq is the acceleration in quadrature counts / [(sample time)2]

AR is the acceleration in revolutions / [(second)2]

N is 4 * (Number of lines in the encoder) = 360 quadrature counts / revolution

t is the sample time XE "Sample time" on the hand electronics = 2.23E-4 seconds / sample time

The maximum velocity, in quadrature counts / sample time, is determined by using part of the variables MCV XE "Firmware parameters:MCV" and MOV XE "Firmware parameters:MOV" , which are 12 bits integer and 4 bits fraction. The maximum velocity is set to the lower 8 bits of the 12-bit integer. For example:

200 Control Velocity = 0000 0000 1100 1000 (Binary)

Lower 8 bits of Integer = 0000 1100 = 12

Maximum Velocity = 12 quadrature counts / sample time

It is important to note the minimum value for MCV and MOV is 16 to move the motors during Trapezoidal Profile Mode.

3.2.2 Supervisory Mode Commands

Note: BHand.h file defines the class BHand XE "BHand" . Define a single object of that class, and use it for all hand control. Make sure the object does not go out of scope (i.e. define it as either a global variable, or in the main function). All examples in this section assume an object named bh of class BHand and an error code of type int named err were previously defined.

Baud XE "Supervisory Mode commands:Baud"
Syntax:
int Baud(DWORD baud)
Arguments:
baud:
The desired baud rate XE "Baud rate" should be stored in this variable.

Value:

baud:
600, 1200, 2400, 4800, 9600, 19200, 38400

Example:
// sets hand and serial port to 9600 baud

DWORD baud = 9600;

err = bh.Baud(baud);

Purpose:
Changes the baud rate XE "Baud rate" of both the hand and the software Library to the new value. The possible values are the standard baud rates up to 38400.

Notes:
The baud rate of the hand is reset to 9600 by issuing the command InitHand() XE "Supervisory Mode commands:InitHand" .

Buffer XE "Supervisory Mode commands:Buffer"
Syntax:
const char* Buffer(void)

Arguments:
N/A

Value:

N/A

Example:
// stores characters from the outbuf into ptrValue

const char* ptrValue;

ptrValue = bh.Buffer();

Purpose:
Provides read-only access to the output buffer XE "Buffers" where hand commands waiting to be sent are stored.

Notes:
N/A

Close XE "Supervisory Mode commands:Close"
Syntax:
int Close(char* motor)
Arguments:
motor:
Specifies which motors will be closed.

Value:
Motor Parameter
Result

1
Finger F1

2
Finger F2

3
Finger F3

4 or S
Spread Motion

G
Fingers F1, F2 and F3

Empty String ("")
All motors (see firmware variable EN in Section 3.6)

Example:
// closes grasp

char motor[4] = "123";

err = bh.Close(motor);

Purpose:
Close specified motors until close joint stops are encountered or another object inhibits movement.

Notes:
Both the inner and outer link will close together until an object is encountered. If the fingertip hits first, the finger will stop closing. If the inner link contacts first, with sufficient force, the TorqueSwitch™ XE "TorqueSwitch™" will activate. The fingertip will then continue to close until contacting an object or reaching its joint stop. Please refer to the BarrettHand User Manual for a more detailed description of how the TorqueSwitch™ works.

Be aware that when the spread closes, Fingers F1 and F2 may stop the spread from closing completely if they come in contact with another finger or object.

The motor argument passed to the function needs to be a pointer to a string.

Command XE "Supervisory Mode commands:Command"
Syntax:
int Command(char* send, char* receive)

Arguments:
send:
String to send to the BarrettHand.

receive:
Pointer to a buffer where the response will be stored.

Value:
send:
Any variation of letters and numbers.

receive:
Valid response to the command sent.

Example:
// gets maximum close velocity of motor F3 and stores

// the resultant string value in receive

char command[10] = "3FGET MCV";

char receive[10];

err = bh.Command(command, &receive);

Purpose:
Send an ASCII XE "ASCII" character string to the BarrettHand. The hand is expected to respond in Supervisory mode. If the receive buffer is supplied, the function will copy the hand response into the buffer. If not, you can obtain the hand response using the command Response().

Notes:
This function can be used to implement a simple terminal control. The command argument passed to the function needs to be a pointer to a string.

Default XE "Supervisory Mode commands:Default"
Syntax:
int Default(char* motor)
Arguments:
motor:
Specifies which motor's default parameters to load.

Value:
Motor Parameter
Result

1
Finger F1

2
Finger F2

3
Finger F3

4 or S
Spread Motion

G
Fingers F1, F2 and F3

Empty String ("")
All motors (see firmware variable EN in Section 3.6)

Example:
// loads factory default parameters for the grasp

char motor[2] = "G";

err = bh.Default(motor);

Purpose:
Loads factory default motor parameters from EEPROM XE "EEPROM" into active parameter list.

Notes:
This command only changes the active parameters, to write the parameters to EEPROM use Save() XE "Supervisory Mode commands:Save" . The motor argument passed to the function needs to be a pointer to a string.

Delay XE "Supervisory Mode commands:Delay"
Syntax:
int Delay(DWORD msec);
Arguments:
msec:
The desired delay XE "Delay" should be stored in this variable.

Value:

msec:
0 - 4.29E9 milliseconds

Example:
// Inserts a delay of 3 seconds

DWORD time = 3000;

err = bh.Delay(time);

Purpose:
Insert a delay into sequence of commands.

Notes:
None.

Get XE "Supervisory Mode commands:Get"
Syntax:
int Get(char* motor, char* parameter, int* result)

Arguments:
motor:

Specifies which motor's parameters to get.

parameter:
Specifies which parameter you want to get.

result:

The parameter values will be stored in this variable.

Value:
Motor Parameter
Result

1
Finger F1

2
Finger F2

3
Finger F3

4 or S
Spread Motion

G
Fingers F1, F2 and F3

Empty String ("")
All motors (see firmware variable EN in Section 3.6)

Parameter
Description
Range/Value

ACCEL XE "Firmware parameters:ACCEL"
Acceleration
0 - 32767

BAUD XE "Firmware parameters:BAUD"
Baud rate
see Section 3.6

DP XE "Firmware parameters:DP"
Default Position
0 - 20000

DS XE "Firmware parameters:DS"
Default Step Size
0 - 20000

EN XE "Firmware parameters:EN"
Enable motor when no motor prefix
0 or 1

FDZ XE "Firmware parameters:FDZ"
Filter Derivative Zero
0 - 255

FIP XE "Firmware parameters:FIP"
Filter Integral Pole
0 - 255

FPG XE "Firmware parameters:FPG"
Filter Proportional Gain
0 - 255

HOLD XE "Firmware parameters:HOLD"
Motor should hold when idle
0 or 1

LCPG XE "Firmware parameters:LCPG"
Loop Command Proportional Gain Flag
0 or 1

LCV XE "Firmware parameters:LCV"
Loop Command Velocity Flag
0 or 1

LCVC XE "Firmware parameters:LCVC"
Loop Command Velocity Coefficient
0 - 255

LFAP XE "Firmware parameters:LFAP"
Loop Feedback Absolute Position Flag
0 or 1

LFDP XE "Firmware parameters:LFDP"
Loop Feedback Delta Position Flag
0 or 1

LFDPC XE "Firmware parameters:LFDPC"
Loop Feedback Delta Position Coefficient
0 - 255

LFS XE "Firmware parameters:LFS"
Loop Feedback Strain Flag
0 or 1

LFV XE "Firmware parameters:LFV"
Loop Feedback Velocity Flag
0 or 1

LFVC XE "Firmware parameters:LFVC"
Loop Feedback Velocity Coefficient
0 - 255

MCV XE "Firmware parameters:MCV"
Maximum Close Velocity
0 - 255

MOV XE "Firmware parameters:MOV"
Maximum Open Velocity
0 - 255

MSG XE "Firmware parameters:MSG"
Maximum Strain Gage
0 - 256

MPE XE "Firmware parameters:MPE"
Maximum Position Error
0 - 20000

P XE "Firmware parameters:P"
Position of Motor
0 - 20000

S XE "Firmware parameters:S"
State of Motor
0 or 1

SG XE "Firmware parameters:SG"
Strain Gage Value
0 - 255

SGFLIP XE "Firmware parameters:SGFLIP"
Flip strain gage value
0 or 1

TSTOP XE "Firmware parameters:TSTOP"
Time before motor is considered stopped
0 - 32767

Example:
// gets the maximum close velocity for finger F1 and

// stores it in result

char motor[2] = "1";

char parameter[4] = "MCV";

int result;

err = bh.Get(motor, parameter, &result);

Purpose:
Gets motor parameters.

Notes:
Some of the parameters have changed from earlier versions of the software. Verify the size of the result variable can hold all values returned. For example, if you request the values for motors F1, F2 and F3, make sure you pass a pointer to an array with at least 3 valid locations.

The motor and parameter arguments passed to the function need to be pointers to strings. See Section 3.6 for more information on the firmware parameters.

GoToDefault XE "Supervisory Mode commands:GoToDefault"
Syntax:
int GoToDefault(char* motor);
Arguments:
motor:
Specifies which motors will be moved.

Value:
Motor Parameter
Result

1
Finger F1

2
Finger F2

3
Finger F3

4 or S
Spread Motion

G
Fingers F1, F2 and F3

Empty String ("")
All motors (see firmware variable EN in Section 3.6)

Example:
// move grasp to default positions

char motor[2] = "G";

err = bh.GoToDefault(motor);

Purpose:
Moves all motors to default positions defined by the default parameter DP XE "Firmware parameters:DP" .

Notes:
This command simultaneously moves the motors to the default positions. Verify the default positions are reachable by using the command Get() XE "Supervisory Mode commands:Get" . A fully closed finger has about 17500 encoder counts and a fully closed spread has about 3000 encoder counts. Values outside of this range may not be attainable for some BarrettHands due to small variations in previous versions of the BarrettHand.

The motor argument passed to the function needs to be a pointer to a string.

GoToDifferentPositions XE "Supervisory Mode commands:GoToDifferentPositions"
Syntax:
int GoToDifferentPositions(int value1, int value2, int value3, int value4)

Arguments:
value1,2,3,4:
Specifies the encoder position for each motor respectively.

Value:

value1,2,3,4:
0 - 20,000

Example:
// moves finger F1 to 2000, finger F2 to 3000, finger F3

// to 4000 and Spread to 1000

err = bh.GoToDifferentPositions(2000, 3000, 4000, 1000);
Purpose:
Moves all motors to specified encoder positions.

Notes:
This command simultaneously moves the motors to the positions specified. Verify the desired positions are reachable. A fully closed finger has about 17500 encoder counts and a fully closed spread has about 3000 encoder counts. Values outside of this range may not be attainable for some BarrettHands due to small variations in previous versions of the BarrettHand.

GoToHome XE "Supervisory Mode commands:GoToHome
Syntax:
int GoToHome(void)

Arguments:
N/A

Value:
N/A

Example:
// moves all motors to the home position

err = bh.GoToHome();

Purpose:
Moves all motors to the home position, all fingers and the spread in the full open position. The home position is also defined as 0 encoder counts for each of the motors, see the BarrettHand User Manual for more information on the zero position.

Notes:
None.

GoToPosition XE "Supervisory Mode commands:GoToPosition"
Syntax:
int GoToPosition(char* motor, int value)

Arguments:
motor:
Specifies which motors will be closed.

value: Specifies the encoder position to be moved to.

Value:
Motor Parameter
Result

1
Finger F1

2
Finger F2

3
Finger F3

4 or S
Spread Motion

G
Fingers F1, F2 and F3

Empty String ("")
All motors (see firmware variable EN in Section 3.6)

value:
0 - 20,000 encoder counts

Example:
// moves finger F3 to position 10000

char motor[2] = "3";

err = bh.GoToPosition(motor, 10000);

Purpose:
Moves motors to specified encoder position.

Notes:
This command moves the desired motors to the position specified. Verify that the desired position is reachable. A fully closed finger has about 17500 encoder counts and a fully closed spread has about 3000 encoder counts. Values outside of this range may not be attainable for some BarrettHands due to small variations in previous versions of the BarrettHand.

The motor argument passed to the function needs to be a pointer to a string.

InitHand XE "Supervisory Mode commands:InitHand"
Syntax:
int InitHand(char* motor)

Arguments:
motor:
Specifies motors to initialize.

Value:
Motor Parameter
Result

1
Finger F1

2
Finger F2

3
Finger F3

4 or S
Spread Motion

G
Fingers F1, F2 and F3

Empty String ("")
All motors (see firmware variable EN in Section 3.6)

Example:
// initializes all Finger motors

char motor[2] = "G";

err = bh.InitHand(motor);

Purpose:
Determines encoder and motor alignment for commutation XE "Commutation" , moves all fingers and spread to open positions and resets the baud rate XE "Baud rate" to 9600.

Notes:
InitHand() needs to be called after the hand has been reset. This command must be run before any other motor commands, once the hand is turned on.

The motor argument passed to the function needs to be a pointer to a string.

InitSoftware XE "Supervisory Mode commands:InitSoftware"
Syntax:
int InitSoftware(int port, int priority = THREAD_PRIORITY_TIME_CRITICAL)
Arguments:
port:

Specifies the serial port XE "Serial port" to use.

priority:
Specifies the priority XE "Thread priority" of the low-level thread. If not specified, the value is set to the highest priority.

Value:
port:

can be set to any valid serial port on the host computer

priority:
THREAD_PRIORITY_IDLE

THREAD_PRIORITY_LOWEST

THREAD_PRIORITY_BELOW_NORMAL

THREAD_PRIORITY_NORMAL

THREAD_PRIORITY_ABOVE_NORMAL

THREAD_PRIORITY_HIGHEST

THREAD_PRIORITY_TIME_CRITICAL

Example:
// initializes the software for communications port 1

// initializes the low-level thread to be

// THREAD_PRIORITY_HIGHEST

err = bh.InitSoftware(1, THREAD_PRIORITY_HIGHEST);

Purpose:
This function resets all internal variables to their defaults:

syncMode XE "Variables:syncMode" = BHMODE_SYNC

pCallback XE "Variables:pCallback" = NULL

requestTimeout XE "Variables:requestTimeout" = INFINITE

It then opens the communications port, sets the low-level thread priority XE "Thread priority" , and resets the hand (setting the baud rate XE "Baud rate" to 9600)

Notes:
User must call InitHand() XE "Supervisory Mode commands:InitHand" after resetting the hand. Barrett recommends that the priority not be changed unless you are familiar with thread priorities.

Load XE "Supervisory Mode commands:Load"
Syntax:
int Load(char* motor)

Arguments:
motor:
Specifies which motor's parameters to load.

Value:
Motor Parameter
Result

1
Finger F1

2
Finger F2

3
Finger F3

4 or S
Spread Motion

G
Fingers F1, F2 and F3

Empty String ("")
All motors (see firmware variable EN in Section 3.6)

Example:
// loads previously saved parameters for the grasp

char motor[2] = "G";

err = bh.Load(motor);

Purpose:
Loads the saved motor parameters from EEPROM XE "EEPROM" into active parameter list.

Notes:
The motor argument passed to the function needs to be a pointer to a string. All of the settable firmware parameters will be loaded into RAM.

Open XE "Supervisory Mode commands:Open"
Syntax:
int Open(char* motor)

Arguments:
motor:
Specifies which motors will be opened.

Value:
Motor Parameter
Result

1
Finger F1

2
Finger F2

3
Finger F3

4 or S
Spread Motion

G
Fingers F1, F2 and F3

Empty String ("")
All motors (see firmware variable EN in Section 3.6)

Example:
// opens the spread

char motor[2] = "S";

err = bh.Open(motor);

Purpose:
Open specified motors until open joint stops are encountered or another object prevents movement. For the fingers, if the TorqueSwitch™ XE "TorqueSwitch™" was activated, the outer link will open until the clutch is engaged. Once engaged, the inner and outer link will open together.

Notes:
Be aware that when the spread opens, Fingers F1 and F2 may stop the spread from opening completely if they come in contact with another finger or object.

The motor argument passed to the function needs to be a pointer to a string.

Reset XE "Supervisory Mode commands:Reset"
Syntax:
int Reset(void)
Arguments:
N/A

Value:

N/A

Example:
// resets the hand

err = bh.Reset();

Purpose:
Resets the firmware loop in the BarrettHand and sets the baud rate XE "Baud rate" to 9600.

Notes:
After resetting the BarrettHand you will need to call InitHand() XE "Supervisory Mode commands:InitHand" before issuing any motion commands.

Response XE "Supervisory Mode commands:Response"
Syntax:
const char* Response(void)

Arguments:
N/A

Value:

N/A

Example:
//stores characters from the input buffer into ptrValue

const char* ptrValue;

ptrValue = bh.Response();

Purpose:
Provides read-only access to the input buffer XE "Buffers" where hand responses are stored.

Notes:
Leading and trailing white space characters are eliminated, as well as the “=>” prompt at the end of the string. If the Library is used in asynchronous XE "Asynchronous" mode, wait for request completion before reading the response buffer.

Save XE "Supervisory Mode commands:Save"
Syntax:
int Save(char* motor)

Arguments:
motor:
Specifies which motor's parameters to save.

Value:
Motor Parameter
Result

1
Finger F1

2
Finger F2

3
Finger F3

4 or S
Spread Motion

G
Fingers F1, F2 and F3

Empty String ("")
All motors (see firmware variable EN in Section 3.6)

Example:
// saves the grasp motor parameters

char motor[2] = "G";

err = bh.Save(motor);

Purpose:
Saves present motor parameters from the active parameter list to EEPROM XE "EEPROM" . These values can be loaded later. Storing the values in EEPROM allows you to reset the BarrettHand and retain preferred motor parameters.

Notes:
The parameters can be recalled into the active parameter list by using the function Load() XE "Supervisory Mode commands:Load" .

The motor argument passed to the function needs to be a pointer to a string.

Set XE "Supervisory Mode commands:Set"
Syntax:
int Set(char* motor, char* parameter, int value)

Arguments:
motor:
Specifies which motor's parameters to set.

parameter: Specifies which parameter will be set.

value:
Specifies the desired value of the parameter.

Value:
Motor Parameter
Result

1
Finger F1

2
Finger F2

3
Finger F3

4 or S
Spread Motion

G
Fingers F1, F2 and F3

Empty String ("")
All motors (see firmware variable EN in Section 3.6)

Parameter
Description
Range/Value

ACCEL XE "Firmware parameters:ACCEL"
Acceleration
0 - 32767

BAUD XE "Firmware parameters:BAUD"
Baud rate
see Section 3.6

DP XE "Firmware parameters:DP"
Default Position
0 - 20000

DS XE "Firmware parameters:DS"
Default Step Size
0 - 20000

EN XE "Firmware parameters:EN"
Enable motor when no motor prefix
0 or 1

FDZ XE "Firmware parameters:FDZ"
Filter Derivative Zero
0 - 255

FIP XE "Firmware parameters:FIP"
Filter Integral Pole
0 - 255

FPG XE "Firmware parameters:FPG"
Filter Proportional Gain
0 - 255

HOLD XE "Firmware parameters:HOLD"
Motor should hold when idle
0 or 1

LCPG XE "Firmware parameters:LCPG"
Loop Command Proportional Gain Flag
0 or 1

LCV XE "Firmware parameters:LCV"
Loop Command Velocity Flag
0 or 1

LCVC XE "Firmware parameters:LCVC"
Loop Command Velocity Coefficient
0 - 255

LFAP XE "Firmware parameters:LFAP"
Loop Feedback Absolute Position Flag
0 or 1

LFDP XE "Firmware parameters:LFDP"
Loop Feedback Delta Position Flag
0 or 1

LFDPC XE "Firmware parameters:LFDPC"
Loop Feedback Delta Position Coefficient
0 - 255

LFS XE "Firmware parameters:LFS"
Loop Feedback Strain Flag
0 or 1

LFV XE "Firmware parameters:LFV"
Loop Feedback Velocity Flag
0 or 1

LFVC XE "Firmware parameters:LFVC"
Loop Feedback Velocity Coefficient
0 - 255

MCV XE "Firmware parameters:MCV"
Maximum Close Velocity
0 - 255

MOV XE "Firmware parameters:MOV"
Maximum Open Velocity
0 - 255

MSG XE "Firmware parameters:MSG"
Maximum Strain Gage
0 - 256

MPE XE "Firmware parameters:MPE"
Maximum Position Error
0 - 20000

SGFLIP XE "Firmware parameters:SGFLIP"
Flip strain gage value
0 or 1

TSTOP XE "Firmware parameters:TSTOP"
Time before motor is considered stopped
0 - 32767

Example:
// set finger F1 maximum close velocity to 20

char motor[2] = "1";

char parameter[4] = "MCV";

err = bh.Set(motor, parameter, 20);

Purpose:
Sets motor parameters.

Notes:
Some of the parameters have changed from earlier versions of the software.

The motor and parameter arguments passed to the function need to be pointers to strings. See Section 3.6 for more information on the firmware parameters.

StepClose XE "Supervisory Mode commands:Close"
Syntax:
int StepClose(char* motor, int value)
Arguments:
motor:
Specifies which motors will be closed.

value: Specifies the size of the incremental close.

Value:
Motor Parameter
Result

1
Finger F1

2
Finger F2

3
Finger F3

4 or S
Spread Motion

G
Fingers F1, F2 and F3

Empty String ("")
All motors (see firmware variable EN in Section 3.6)

value:
0 - 20,000 encoder counts

Example:
// step close finger F2 1500 encoder counts

char motor[2] = "2";

err = bh.StepClose(motor, 1500);

Purpose:
Incrementally closes the specified motors. The close amount can either be specified or the default size will be used. The parameter DS XE "Firmware parameters:DS" contains the default increment size.

Notes:
Be aware of what the final encoder values will be before using this command. Fingers fully closed will have an approximate position of 17500 and a fully closed spread will have an approximate position of 3000. The spread is also geared differently than the fingers so the percentage of closure for the spread will be more than the fingers for the same step size.

The motor argument passed to the function needs to be a pointer to a string.

StepOpen XE "Supervisory Mode commands:StepOpen"
Syntax:
int StepOpen(char* motor, int value)
Arguments:
motor:
Specifies which motors will be opened.

value:
Specifies the size of the incremental open.

Value:
Motor Parameter
Result

1
Finger F1

2
Finger F2

3
Finger F3

4 or S
Spread Motion

G
Fingers F1, F2 and F3

Empty String ("")
All motors (see firmware variable EN in Section 3.6)

value:
0 - 20,000 encoder counts

Example:
// step open the grasp 2000 encoder counts

char motor[2] = "G";

err = bh.StepOpen(motor, 2000);

Purpose:
Incrementally opens the specified motors. The open amount can either be specified or the default size will be used. The parameter DS XE "Firmware parameters:DS" contains the default increment size.

Notes:
Be aware of what the final encoder values will be before using this command. All motors when fully open will have a position of zero. The spread is also geared differently than the fingers so the percentage of opening for the spread will be more than the fingers for the same step size.

The motor argument passed to the function needs to be a pointer to a string.

StopMotor XE "Supervisory Mode commands:StopMotor"
Syntax:
int StopMotor(char* motor)

Arguments:
motor:
Specifies which motors will be terminated.

Value:
Motor Parameter
Result

1
Finger F1

2
Finger F2

3
Finger F3

4 or S
Spread Motion

G
Fingers F1, F2 and F3

Empty String ("")
All motors (see firmware variable EN in Section 3.6)

Example:
// stops actuating the spread motor

char motor[2] = "S";

err = bh.StopMotor(motor);

Purpose:
Stops actuating motors specified.

Notes:
Because the fingers are not backdrivable XE "Backdrivable" , the finger motors are actually terminated after finished moving. The spread motion is backdrivable and is therefore commanded to hold position even after the desired position is attained. Use the StopMotor() command when possible, to reduce the amount of heat generated by the hand.

The motor argument passed to the function needs to be a pointer to a string.

Temperature XE "Supervisory Mode commands:Temperature"
Syntax:
int Temperature(int* result)

Arguments:
result:
The temperature will be stored in this variable.

Value:

result:
The result will be returned in degrees Celsius.

Example:
// stores the temperature in result

int result;

err = bh.Temperature(&result);

Purpose:
Returns the temperature XE "Temperature" from the temperature sensor on the BarrettHand.

Notes:
The temperature sensor is located at the bottom of the hand electronics and indicates the temperature of the surrounding environment. The mechanical parts of the hand may be at a different temperature, due to distance from sensor and surface area for heat dissipation.

3.3 User Functions – RealTime Mode

3.3.1 Overview of RealTime Mode XE "RealTime Mode"
One of the new features of the BarrettHand is the RealTime control. This new control mode allows you to send commands and receive feedback from the hand controller continuously. Any desired control law can be applied by using the host computer to determine the desired motor command and then applying that command to the BarrettHand in real-time. The communication bandwidth is dependent on the amount of control information sent, feedback information requested and the selected baud rate XE "Baud rate" .

Following is a list of parameters and a brief explanation of the function they perform:

Table 2 - RealTime Control Parameters

Parameter
Name
Type
Function
Size in Block

LCV XE "Firmware parameters:LCV"
Loop Control Velocity
Flag
If True, RealTime control block will contain control velocity
1 signed byte

LCPG XE "Firmware parameters:LCPG"
Loop Control Proportional Gain
Flag
If True, RealTime control block will contain Proportional Gain
1 unsigned byte

LCVC XE "Firmware parameters:LCVC"
Loop Control Velocity Coefficient
Variable (integer)
LCV is multiplied by LCVC to determine control velocity
N/A

LFV XE "Firmware parameters:LFV"
Loop Feedback Velocity
Flag
If True, RealTime feedback block will contain feedback velocity
1 signed byte

LFVC XE "Firmware parameters:LFVC"
Loop Feedback Velocity Coefficient
Variable (integer)
Actual velocity is divided by LFVC to get LFV
N/A

LFS XE "Firmware parameters:LFS"
Loop Feedback Strain
Flag
If True, RealTime feedback block will contain strain information
1 unsigned byte

LFAP XE "Firmware parameters:LFAP"
Loop Feedback Absolute Position
Flag
If True, RealTime feedback block will contain absolute position
2 unsigned bytes

LFDP XE "Firmware parameters:LFDP"
Loop Feedback Delta Position
Flag
If True, RealTime feedback block will contain delta position
1 signed byte

LFDPC XE "Firmware parameters:LFDPC"
Loop Feedback Delta Position Coefficient
Variable (integer)
The actual delta position is divided by this to get LFDP
N/A

Before entering RealTime mode, you must first select what data is to be sent (control) and received (feedback) from the hand by setting RealTime flags and variables. RealTime flags determine what data is going to be sent and received from the hand during RealTime control. RealTime variables affect commands that are used during RealTime control but are set once and not continuously transmitted. You can specify different blocks of information for each motor by setting RealTime flags for each motor. You can also set different values for RealTime variables for each motor. The possible control data that can be sent are:

· LCV XE "Firmware parameters:LCV" (Loop Control Velocity): 1 signed byte

· LCPG XE "Firmware parameters:LCPG" (Loop Control Proportional Gain): 1 unsigned byte

The possible feedback data that can be received are:

· LFV XE "Firmware parameters:LFV" (Loop Feedback Velocity): 1 signed byte

· LFS XE "Firmware parameters:LFS" (Loop Feedback Strain): 1 unsigned byte

· LFAP XE "Firmware parameters:LFAP" (Loop Feedback Absolute Position): unsigned 2-byte word

· LFDP XE "Firmware parameters:LFDP" (Loop Feedback Delta Potion): 1 signed byte

You must set all RealTime variables to the desired values. Following is a list of the variables that need to be set and how they affect control:

· LCVC XE "Firmware parameters:LCVC" (Loop Control Velocity Coefficient): Commanded Velocity = LCV * LCVC. (Commanded Velocity is the value that will actually be commanded.)

· LFVC XE "Firmware parameters:LFVC" (Loop Feedback Velocity Coefficient): LFV = Actual Velocity / LFVC. (Actual Velocity is the velocity at which the motor is actually spinning.)

· LFDPC XE "Firmware parameters:LFDPC" (Loop Feedback Delta Position Coefficient): LFDP = Change in Position / LFDPC. (Change in Position is the actual change in position of the motor.)

Set the desired RealTime flags and variables by using the command RTSetFlags(motor, LCV, LCVC, LCPG, LFV, LFVC, LFS, LFAP, LFDP, LFDPC) XE "RealTime Mode commands:RTSetFlags" .
Once the RealTime flags and variables have been set, the hand is ready for RealTime control. To begin RealTime control, execute the command RTStart(motors) XE "RealTime Mode commands:RTStart" . Use the functions RTSetVelocity() XE "RealTime Mode commands:RTSetVelocity" and RTSetGain() XE "RealTime Mode commands:RTSetGain" to change the desired control values. Use RTGetVelocity() XE "RealTime Mode commands:RTGetVelocity" , RTGetPosition() XE "RealTime Mode commands:RTGetPosition" , RTGetStrain() XE "RealTime Mode commands:RTGetStrain" and RTGetDeltaPos() XE "RealTime Mode commands:RTGetDeltaPos" to read the feedback values from the BarrettHand. Repeated calls to the RTUpdate() XE "RealTime Mode commands:RTUpdate" command are used to send control values and request feedback. Finally, RTAbort() XE "RealTime Mode commands:RTAbort" is called to exit RealTime mode.

3.3.2 RealTime Mode Commands

Note: BHand.h file defines the class BHand XE "BHand" . Define a single object of that class, and use it for all hand control. Make sure the object does not go out of scope (i.e. define it as either a global variable, or in the main function). All examples in this section are assuming an object named bh of class BHand was previously defined.

RTAbort XE "RealTime Mode commands:RTAbort"
Syntax:
int RTAbort(void)

Arguments:
N/A

Value:

N/A

Example:
//Ends RealTime control

err = bh.RTAbort();

Purpose:
Ends RealTime mode and returns to Supervisory mode.

Notes:
N/A

RTGetDeltaPos XE "RealTime Mode commands:RTGetDeltaPos"
Syntax:
char RTGetDeltaPos(char motor)
Arguments:
motor:
Determines which motor's delta position will be retrieved.

Value:
Motor Parameter
Result

1
Finger F1

2
Finger F2

3
Finger F3

4 or S
Spread Motion

Example:
//Gets delta position for motor F1

char DeltaPosition;

DeltaPosition = bh.RTGetDeltaPos('1');

Purpose:
Gets RealTime delta position feedback for the desired motor.

Notes:
Only one motor value can be retrieved at a time.

Delta position is the change in position from the last reported position and is limited to one signed byte. The present position is read and compared to the last reported position. The difference is divided by the RealTime variable LFDPC, clipped to a single signed byte, and then sent to the host. The value sent to the host should then be multiplied by LFDPC XE "Firmware parameters:LFDPC" and added to the last reported position.

Example (with LFDPC set to 2): What will delta position feedback look like if last reported position was 1500 and the position jumps to 2000? The first feedback block will include the delta position value 127. This value should be multiplied by LFDPC on the host machine resulting in 254. The hand will internally update the reported position to 1754. The next feedback block will include the delta position 123, which should be multiplied by LFDPC resulting in 246. The reported position will be updated to 2000. Subsequent feedback blocks will include the delta position value 0 (until the next position change).

RTGetPosition XE "RealTime Mode commands:RTGetPosition"
Syntax:
int RTGetPosition(char motor)
Arguments:
motor:
Determines which motor's absolute position will be retrieved.

Value:
Motor Parameter
Result

1
Finger F1

2
Finger F2

3
Finger F3

4 or S
Spread Motion

Example:
//Gets absolute position for motor F1

char Position;

Position = bh.RTGetPosition('1');

Purpose:
Gets RealTime absolute position feedback for the desired motor.

Notes:
Only one motor value can be retrieved at a time.

RTGetStrain XE "RealTime Mode commands:RTGetStrain"
Syntax:
unsigned char RTGetStrain(char motor)
Arguments:
motor:
Determines which finger strain gage values will be retrieved.

Value:
Motor Parameter
Result

1
Finger F1

2
Finger F2

3
Finger F3

4 or S
Spread Motion

Example:
//Gets strain gage values for motor F3

unsigned char Strain;

Strain = bh.RTGetStrain('3');

Purpose:
Gets RealTime strain gage feedback value for the desired motor.

Notes:
Only one motor value can be retrieved at a time.

RTGetVelocity XE "RealTime Mode commands:RTGetVelocity"
Syntax:
char RTGetVelocity(char motor)
Arguments:
motor:
Determines which motor velocities will be retrieved.

Value:
Motor Parameter
Result

1
Finger F1

2
Finger F2

3
Finger F3

4 or S
Spread Motion

Example:
//Get actual velocity of motor F1

char Velocity;

Velocity = bh.RTGetVelocity('1');

Purpose:
Gets RealTime actual velocity value for the desired motor.

Notes:
Only one motor value can be retrieved at a time.

RTSetFlags XE "RealTime Mode commands:RTSetFlags"
Syntax:
int RTSetFlags(char* motor, bool LCV, int LCVC, bool LCPG, bool LFV, int LFVC, bool LFS, bool LFAP, bool LFDP, int LFDPC)

Arguments:
motor:
determines which motor parameters will be set

LCV XE "Firmware parameters:LCV" :
Loop Control Velocity Flag

LCVC XE "Firmware parameters:LCVC" :
Loop Control Velocity Coefficient

LCPG XE "Firmware parameters:LCPG" :
Loop Control Proportional Gain Flag

LFV XE "Firmware parameters:LFV" :
Loop Feedback Velocity Flag

LFVC XE "Firmware parameters:LFVC" :
Loop Feedback Velocity Coefficient

LFS XE "Firmware parameters:LFS" :
Loop Feedback Strain Flag

LFAP XE "Firmware parameters:LFAP" :
Loop Feedback Absolute Position Flag

LFDP XE "Firmware parameters:LFDP" :
Loop Feedback Delta Position Flag

LFDPC XE "Firmware parameters:LFDPC" :
Loop Feedback Delta Position Coefficient

Value:
Motor Parameter
Result

1
Finger F1

2
Finger F2

3
Finger F3

4 or S
Spread Motion

G
Fingers F1, F2 and F3

Empty String ("")
All motors (see firmware variable EN in Section 3.6)

LCV
TRUE or FALSE

LCVC
0 - 255

LCPG
TRUE or FALSE

LFV
TRUE or FALSE

LFVC
0 - 255

LFS
TRUE or FALSE

LFAP
TRUE or FALSE

LFDP
TRUE or FALSE

LFDPC
0 - 255

Example:
//Prepares flags and variables to send control velocity

//and receive absolute position to/from motor F2

char motor[2] = "2";

err = bh.RTSetFlags(motor, TRUE, 1, FALSE, FALSE, 1, FALSE, TRUE, FALSE, 1);

Purpose:
Sets the nine parameters relevant for RealTime mode, for the specified motors.

Notes:
This function is provided for convenience, the same effect can be achieved with multiple calls to the Set() XE "Supervisory Mode commands:Set" function in Section 3.2.2.

The motor argument passed to the function needs to be a pointer to a string.

RTSetGain XE "RealTime Mode commands:RTSetGain"
Syntax:
int RTSetGain(char motor, int gain)
Arguments:
motor:
Determines which motor gain will be set.

gain:
Desired proportional gain XE "Proportional gain" for the selected motors.

Value:
Motor Parameter
Result

1
Finger F1

2
Finger F2

3
Finger F3

4 or S
Spread Motion

gain:
0 - 255

Example:
//Set gain parameters of motors F1 and F2 to 150

err = bh.RTSetGain('1', 150);

err = bh.RTSetGain('2', 150);

Purpose:
Sets RealTime proportional gain parameter for the desired motor.

Notes:
Only one motor can be set at a time.

The gains for the motors will not actually be set until RTUpdate() XE "RealTime Mode commands:RTUpdate" is called.

In RealTime control, the motors are controlled using a proportional velocity mode. The proportional gain affects the motor command according to the Velocity Control equations in Section 3.2.1.

RTSetVelocity XE "RealTime Mode commands:RTSetVelocity"
Syntax:
int RTSetVelocity(char motor, int velocity)
Arguments:
motor:

Determines which motor velocity will be set.

velocity:
Desired control velocity for the selected motors.

Value:
Motor Parameter
Result

1
Finger F1

2
Finger F2

3
Finger F3

4 or S
Spread Motion

velocity:
0 - 127

Example:
// Set control velocity parameters of motors F1, F2, and

// F3 to 50

err = bh.RTSetVelocity('1', 50);

err = bh.RTSetVelocity('2', 50);

err = bh.RTSetVelocity('3', 50);

Purpose:
Sets RealTime control velocity parameter for the desired motor.

Notes:
The motors will not actually be set to this control velocity until RTUpdate() XE "RealTime Mode commands:RTUpdate" is called.

Only one motor can be set at a time.

RTStart XE "RealTime Mode commands:RTStart"
Syntax:
int RTStart(char* motor)
Arguments:
motor:
determines which motors will be controlled in RealTime

Value:
Motor Parameter
Result

1
Finger F1

2
Finger F2

3
Finger F3

4 or S
Spread Motion

G
Fingers F1, F2 and F3

Empty String ("")
All motors (see firmware variable EN in Section 3.6)

Example:
//Enter motor F2 into RealTime control

char motor[2] = "2";

err = bh.RTStart(motor);
Purpose:
Call this function when all parameters have been set and you are ready to enter RealTime control.

Notes:
The motor argument passed to the function needs to be a pointer to a string.

RTUpdate XE "RealTime Mode commands:RTUpdate"
Syntax:
int RTUpdate(bool control, bool feedback)
Arguments:
control:
Indicates if control data should be sent.

feedback:
Indicates if feedback data should be received.

Value:
control:
TRUE or FALSE

feedback:
TRUE or FALSE

Example:
//Set Velocity to 30 and read position for motor F2, stop

//when position > 3000

char motor[2]="2";

char parameter[2]="P";

int pos[1];

err = bh.RTSet(motor, TRUE, 1, FALSE, FALSE, 1, FALSE, TRUE, FALSE, 1);

err = bh.Get(motor, parameter, pos);

err = bh.RTStart(motor);

while (pos[1] < 3000)

{

err = bh.RTSetVelocity('2', 30);

err = bh.RTUpdate(TRUE, TRUE);

pos = bh.RTGetPosition('2');

}

Purpose:
This command is used to send and receive data from the hand in RealTime.

Notes:
You must first update command parameters by using the commands RTSetVelocity() and RTSetGain(). To evaluate the feedback from the hand, use the commands RTGetVelocity(), RTGetStrain(), RTGetPosition(), and RTGetDeltaPos().

3.4 Serial Communication Functions

The serial communication functions allow you to communicate with the hand without ever using the high-level Supervisory or RealTime commands. These functions allow you to take complete advantage of the Library functionality.

Note: BHand.h file defines the class BHand. Define a single object of that class, and use it for all hand control. Make sure the object does not go out of scope (i.e. define it as either a global variable, or in the main function). All examples in this section assume an object named bh of class BHand and a status code of type int named err were previously defined.

ComClear XE "Serial Communication functions:ComClear"
Syntax:
bool ComClear(void)

Arguments:
N/A

Value:

Returns TRUE if the clear operation is successful, FALSE if an error occurs.
Example:
// clears characters from the input and output buffers

isCleared = bh.ComClear();
Purpose:
This function clears all characters from the send and receive buffers XE "Buffers" of the serial port.

Notes:

None.

ComInitialize XE "Serial Communication functions:ComInitialize"
Syntax:

int ComInitialize(unsigned char comport, int priority)

Arguments:
comport:
Specifies communications port XE "Communication port" .

priority:
Specifies low-level thread priority XE "Thread priority" .

Value:

comport:
Any valid communications port on host computer.

priority:
THREAD_PRIORITY_IDLE

THREAD_PRIORITY_LOWEST

THREAD_PRIORITY_BELOW_NORMAL

THREAD_PRIORITY_NORMAL

THREAD_PRIORITY_ABOVE_NORMAL

THREAD_PRIORITY_HIGHEST

THREAD_PRIORITY_TIME_CRITICAL

Example:
// initializes communications port 2 with priority set to

// highest

err = bh.ComInitialize('2', THREAD_PRIORITY_HIGHEST);

Purpose:
This function opens the serial port XE "Serial port" with the specified number (1, 2, …) , sets the baud rate XE "Baud rate" to 9600, serial port timeouts XE "Serial port timeout parameters" to default values and initializes the low-level thread to the desired priority XE "Thread priority" .

Notes:
The default thread priority used in the Library is THREAD_PRIORITY_TIME_CRITICAL, the highest possible. For more information on threads and priorities, read the Windows API XE "API" documentation. Only one BHand object can be initialized at a time, calling this function a second time without destroying the previous Bhand object results in an error: BHERR_BHANDEXISTS.

ComIsPending XE "Serial Communication functions:ComIsPending"
Syntax:
bool ComIsPending(void)
Arguments:
N/A

Value:
Returns TRUE if a request to the low-level thread is still pending (or being processed), and FALSE if no request is pending.

Example:
// checks to see if there is a process still pending

isPending = bh.ComIsPending(void);
Purpose:
Determines if a request to the low-level thread is still pending or being processed.

Notes:
None.

ComRead XE "Serial Communication functions:ComRead"
Syntax:
int ComRead(char* buffer, int size)
Arguments:
buffer:
Characters read from serial port are put into the location pointed to by

*buffer.

size:
Represents the number of characters to be read into the buffer.

Value:

buffer:
ASCII characters sent from the hand.

size:
Number of characters returned from hand.

Example:
// reads one character from input buffer into inputbuffer

err = bh.ComRead(&inputbuffer, 1);
Purpose:
Reads size characters from the serial port into the character buffer XE "Buffers" pointed to by *buffer.

Notes:
This function is affected by the present settings of the serial port timeout parameters. The low-level thread uses this function to read data, therefore it is executed with high priority.

ComRequest XE "Serial Communication functions:ComRequest"
Syntax:
int ComRequest(int requestNumber)

Arguments:
request number: Type of request from low-level thread.

Value:

request number:

BHREQ_EXIT XE "Request type:BHREQ_EXIT" :
exit the low-level loop (called before the Library is closed)

BHREQ_REALTIME XE "Request type:BHREQ_REALTIME" :
RealTime command: expect response starting with ‘*’

BHREQ_SUPERVISE XE "Request type:BHREQ_SUPERVISE" :
Supervise command: expect response ending with "=>"

BHREQ_CLEAR XE "Request type:BHREQ_CLEAR" :
clear com port buffers XE "Buffers"
Example:
// Request to clear the com port buffers

err = bh.ComRequest(BHREQ_CLEAR);
Purpose:
This function places a request to the low-level thread. This can be used to receive information, clear the communication port buffers and exit the low-level thread.

Notes:
The response to BHREQ_REALTIME and BHREQ_SUPERVISE can be retrieved by using the command ComRead() XE "Serial Communication functions:ComClear" .

ComSetBaudrate XE "Serial Communication functions:ComSetBaudrate"
Syntax:
int ComSetBaudrate(DWORD baud)

Arguments:
baud:
Rate of communication for selected serial port.

Value:

baud:
600, 1200, 2400, 4800, 9600, 19200, 38400

Example:
// sets serial communication speed for the host computer

// to 9600 baud

err = bh.ComSetBaudrate(9600);
Purpose:
Sets the selected serial port speed to the specified baud rate.

Notes:
Calling this function has to be accompanied by appropriate commands to the BarrettHand hardware, so that its baud rate XE "Baud rate" changes accordingly. In general, if the software Library and the firmware decide to communicate at different baud rates, all functions will return errors. To avoid that situation, always make sure the hand is reset before starting the software, and do not modify the software baud rate and the hand baud rate separately. The high-level function Baud() XE "Supervisory Mode commands:Baud" makes all necessary modifications.

ComSetTimeouts XE "Serial Communication functions:ComSetTimeouts"
Syntax:
int ComSetTimeouts(DWORD readInterval, DWORD readMultiplier, DWORD readConstant, DWORD writeMultiplier, DWORD writeConstant)

Arguments:
readInterval XE "Serial port timeout parameters:readInterval" :
Maximum interval between receiving two consecutive characters.

readMuliplier XE "Serial port timeout parameters:readMultiplier" :
Average time per character.

readConstant XE "Serial port timeout parameters:readConstant" :
Constant time for entire transaction.

writeMultiplier XE "Serial port timeout parameters:writeMultiplier" :
Average time per character.

writeConstant XE "Serial port timeout parameters:writeConstant" :
Constant time for the entire transaction.

Value:
All timeout parameters are in milliseconds.

Example:
// sets

// read interval to 0

// read multiplier to 100

// read constant to 15000

// write multiplier to 100

// write constant to 5000

err = bh.ComSetTimeouts(0, 100, 15000, 100, 5000);
Purpose:
Sets the serial port timeout parameters to the specified values.

Notes:
The ComRead() function returns a timeout error if any between-character interval is too large, or the total amount of time exceeds (readConstant + NumChars*readMultiplier). The write timeout interval is calculated by adding the writeConstant to the product of the writeMulitplier and the number of bytes to be written.

ComWaitForCompletion XE "Serial Communication functions:ComWaitForCompletion"
Syntax:
int ComWaitForCompletion(DWORD timeout)
Arguments:
timeout:
maximum length of time to block the user program.

Value:

timeout:
0 to INFINITE

Example:
// waits for low-level thread to finish processing the

// present request. The function will never time out

err = bh.ComWaitForCompletion(INFINITE);
Purpose:
Blocks execution of the user program until the low-level thread is finished processing the present request or the timeout value has been exceeded.

Notes:
None.

ComWrite XE "Serial Communication functions:ComWrite"
Syntax:
int ComWrite(char* buffer, int size)
Arguments:
buffer:
Characters in the location pointed to by *buffer are sent to the serial port.

size:
Represents the number of characters to be sent from the buffer.

Value:

buffer:
Any ASCII characters can be sent.

size:
The number of characters to be sent.

Example:
// sends O to hand, resulting in all motors opening

char buffer[2] = "O";

err = bh.ComWrite(buffer, 1);
Purpose:
Writes size characters to the serial port from the character buffer XE "Buffers" pointed to by *buffer.

Notes:
This function is affected by the present settings of the serial port timeout parameters XE "Serial port timeout parameters" . The low-level thread uses this function to read data, therefore it is executed with high priority.

3.5 C Library Variables

This section defines the different variables within the C-Function Library.

Variable:
_BHInitialized XE "Variables:_BHInitialized"
Type:
BOOL
Purpose:
This variable is used to indicate that only one BHand XE "BHand" object has been initialized.
Values:
TRUE (already initialized) or FALSE (has not been initialized)

Default:
FALSE
Notes:
This variable is set to TRUE whenever a BHand object has been initialized.

Variable:
pCallback XE "Variables:pCallback"

 XE "Callback function"
Type:
BHCallback
Purpose:
This variable, if different from NULL, is a pointer to a function that will be called right before the low-level thread signals the user program that processing has finished.
Values:
any function

Default:
NULL
Notes:
The function will be executed with high priority so it should not be computationally intensive. The callback function type is: typedef void (*BHCallback)(class BHand*). Following is an example:

void RealTimeCallBackFunction(BHand* noptr)

{

/* Insert code to be executed here */

}

In your main() function use the following assignment:

pCallBack = RealTimeCallBackFunction;

Variable:
requestTimeout XE "Variables:requestTimeout"
Type:
DWORD

Purpose:
This variable specifies the timeout interval (in milliseconds) used in synchronous XE "Synchronous" mode.
Values:
positive integers

Default:
INFINITE
Notes:
INFINITE specifies that the user program does not resume until the low-level thread is finished processing the present request.

Variable:
syncMode XE "Variables:syncMode"

 XE "Asynchronous"

 XE "Synchronous"
Type:

integer

Purpose:
This variable determines whether/how the user program waits for the low-level thread to complete the request before it continues.

Values:
BHMODE_SYNCH XE "Communication mode:BHMODE_SYNCH" :
User program waits for completion of low-level thread.

BHMODE_ASYNCHNOW XE "Communication mode:BHMODE_ASYNCHNOW" :
Try to send request now (error if another request is being processed), do not wait for completion.

BHMODE_ASYNCHWAIT XE "Communication mode:BHMODE_ASYNCHWAIT" :
Wait for completion of previous request, then send request and return immediately
Default:
BHMODE_SYNCH
Notes:
Setting the variable to asynchronous mode allows you to continue program execution while the request is still being processed.

Do not use asynchronous mode when a result is to be returned.

3.6 Firmware Parameters

Parameter:
ACCEL XE "Firmware parameters:ACCEL"
Purpose:
Acceleration value for position control.
Values:
0 - 32767
Default:
Grasp:

1

Spread:
1

Notes:
See Section 3.2 for more detailed description of how ACCEL affects motion.

Parameter:
BAUD XE "Firmware parameters:BAUD"
Purpose:
Returns the present baud rate of the hand divided by 100.

Values:
6, 12, 24, 48, 96, 192 and 384

Default:
96

Notes:
The value returned is in hundreds of bytes per second. To determine the actual baud rate, multiply the value returned by 100.
Parameter:
DP XE "Firmware parameters:DP"
Purpose:
Default position for a move command.
Values:
0 - 20000 encoder counts

Default:
150 (Spread), 1000 (Fingers)

Notes:
None.

Parameter:
DS XE "Firmware parameters:DS"
Purpose:
Default step sizes for incremental open and close commands.
Values:
0 - 20000 encoder counts

Default:
150 (Spread), 1200 (Fingers)

Notes:
None.

Parameter:
EN XE "Firmware parameters:EN"
Purpose:
Specifies if a motor should be selected when a command has no prefix.

Values:
TRUE (selected), FALSE (not selected)

Default:
Grasp:

TRUE

Spread:
TRUE

Notes:
When a close command is issued, C, with no motor prefixes, all motors will close with the default values.

Parameter:
FDZ XE "Firmware parameters:FDZ"
Purpose:
Derivative zero value for the motor control filter.
Values:
0 - 255

Default:
Grasp:

221

Spread:
221

Notes:
See section 3.2 for more detailed description of how FDZ affects motion.

Parameter:
FIP XE "Firmware parameters:FIP"
Purpose:
Integral pole value for the motor control filter.
Values:
0 - 255

Default:
Grasp:

66

Spread:
66

Notes:
See section 3.2 for more detailed description of how FIP affects motion.

Parameter:
FPG XE "Firmware parameters:FPG"
Purpose:
Proportional gain value for the motor control filter.
Values:
0 - 255

Default:
Grasp:
200

Spread:
100

Notes:
See Section 3.2 for more detailed description of how FPG affects motion.

Parameter:
HOLD XE "Firmware parameters:HOLD"
Purpose:
Specifies if a motor should hold position when idled.
Values:
TRUE (hold position), FALSE (do not hold position)

Default:
Grasp:

FALSE

Spread:
TRUE

Notes:
Because the fingers are not backdrivable XE "Backdrivable" when the motors are idled, they will not be able to move freely. However, because the spread is backdrivable it requires this parameter be TRUE to hold its position when idled.

Parameter:
LCPG XE "Firmware parameters:LCPG"
Purpose:
Specifies if the RealTime control block contains control proportional gain.
Values:
FALSE (does not contain), TRUE (does contain)

Default:
FALSE

Notes:
Motor command = (LCPG / 4) * (Control Velocity - Actual Velocity)

Parameter:
LCV XE "Firmware parameters:LCV"
Purpose:
Specifies if the RealTime control block contains control velocity.
Values:
FALSE (does not contain), TRUE (does contain)

Default:
TRUE

Notes:
The size of the control velocity should be 1 signed byte.

Parameter:
LCVC XE "Firmware parameters:LCVC"
Purpose:
LCV is multiplied by the control velocity coefficient (LCVC) to determine the control velocity.
Values:
0 - 255

Default:
1

Notes:
Control velocity = LCV * LCVC

Parameter:
LFAP XE "Firmware parameters:LFAP"
Purpose:
Specifies if the RealTime feedback block contains the feedback absolute position.
Values:
FALSE (does not contain), TRUE (does contain)

Default:
TRUE

Notes:
The size of the feedback absolute position should be an unsigned 2-byte word.

Parameter:
LFDP XE "Firmware parameters:LFDP"
Purpose:
Specifies if the RealTime feedback block contains the feedback delta position.
Values:
FALSE (does not contain), TRUE (does contain)

Default:
FALSE

Notes:
The size of the feedback delta position should be 1 signed byte.

Parameter:
LFDPC XE "Firmware parameters:LFDPC"
Purpose:
The actual change in position is divided by feedback delta position coefficient (LFDPC) to determine LFDP.
Values:
0 - 255

Default:
1

Notes:
Delta position is the change in position from the last reported position and is limited to one signed byte. The present position is read and compared to the last reported position. The difference is divided by the RealTime variable LFDPC, clipped to a single signed byte, and then sent to the host. The value sent to the host should be multiplied by LFDPC and then added to the last reported position.

Parameter:
LFS XE "Firmware parameters:LFS"
Purpose:
Specifies if the RealTime feedback block contains the feedback strain gage value.
Values:
FALSE (does not contain), TRUE (does contain)

Default:
TRUE

Notes:
The size of the feedback strain gage value should be 1 unsigned byte.

Parameter:
LFV XE "Firmware parameters:LFV"
Purpose:
Specifies if the RealTime feedback block contains feedback velocity.
Values:
FALSE (does not contain), TRUE (does contain)

Default:
TRUE

Notes:
The size of the feedback velocity should be 1 signed byte. The actual velocity is LFC*LFVC.

Parameter:
LFVC XE "Firmware parameters:LFVC"
Purpose:
Actual velocity is divided by feedback velocity coefficient (LFVC) to determine LFV.
Values:
0 - 255
Default:
1

Notes:
On the host computer the actual velocity of the motors is equal to LFV * LFVC.

Parameter:
MCV XE "Firmware parameters:MCV"
Purpose:
Maximum close velocity.
Values:
0 - 255

Default:
35 (Spread), 65 (Fingers)

Notes:
See Section 3.2.1 for more information on velocity.

Parameter:
MOV XE "Firmware parameters:MOV"
Purpose:
Maximum open velocity.
Values:
0 - 255

Default:
35 (Spread), 55 (Fingers)

Notes:
The minimum velocity required to reset the TorqueSwitch™ and open and close the finger is 40. See Section 3.2.1 for more information on velocity.

Parameter:
MPE XE "Firmware parameters:MPE"
Purpose:
Maximum position error allowed for a commanded position.
Values:
0 - 30,000

Default:
Grasp:

25

Spread:
25

Notes:
If the final position is not within +/- MPE encoder counts of the desired position then the hand will return an error.

Parameter:
MSG XE "Firmware parameters:MSG"
Purpose:
Maximum strain gage value allowed before the motor is stopped.
Values:
0 - 256

Default:
256

Notes:
Setting the value to 256 indicates that the strain gage value will never stop the motors.

Parameter:
P XE "Firmware parameters:P"
Purpose:
Present motor position.
Values:
0 - 20000 encoder counts

Default:
N/A

Notes:
This parameter can not be set.

Parameter:
S XE "Firmware parameters:S"
Purpose:
Present state of the motor.
Values:
0 (motor found and initialized) or 1 (motor not initialized)

Default:
N/A
Notes:
This parameter can not be set.

Parameter:
SG XE "Firmware parameters:SG"
Purpose:
Present strain gage value.
Values:
0 - 255

Default:
N/A

Notes:
This parameter can not be set.

Parameter:
SGFLIP XE "Firmware parameters:SGFLIP"
Purpose:
Specifies if the reported strain should be (255 - actual strain).
Values:
TRUE (reported strain = (255 - actual strain)), FALSE (reported strain = actual strain)

Default:
Grasp:

FALSE

Spread:
N/A

Notes:
Setting this value will inverse the direction of the change in strain for a given torque.

Parameter:
TEMP XE "Firmware parameters:TEMP"
Purpose:
Returns the present temperature on the CPU board in tenths of degrees Celsius.

Values:
-550 to 1250

Default:
N/A

Notes:
The value returned is in tenths of degrees. To determine the actual temperature, XE "Temperature" divide the value by 10.
Parameter:
TSTOP XE "Firmware parameters:TSTOP"
Purpose:
Time in milliseconds before the motor is considered stopped.
Values:
0 - 32767

Default:
Grasp:

30

Spread:
30

Notes:
None.

3.7 Status Codes XE "Status codes"
All functions in the Library that return an integer use the same status encoding. A return value of 0 indicates successful completion. Positive values correspond to status codes sent by the BarrettHand (i.e. the communication was successful, but the hand returned a status code). Keep in mind that hand status codes are powers of 2. The return value may encode multiple flags. Negative values correspond to Library status codes. The BarrettHand status codes can be found in the table below.

Table 3 - BarrettHand Status Codes XE "Status codes:Hand"
Hand Status Code
Description

1
No motor board found

2
No motor found

4
Motor not initialized

8
not used

16
Couldn't reach position

32
Unknown command

64
Unknown parameter name

128
Invalid value

256
Tried to write a read only parameter

512
Timeout

1024
Too many arguments for this command

2048
Invalid RealTime Control block header

4096
Command can't have motor prefix

The Library functions will abort execution when the first error is encountered, therefore only one status code will be returned. The status codes are listed in Table 4 and in BHand.h:

Table 4 - Library Status Codes XE "Status codes:Library"
Library Status #
Name
Description

 0
N/A
Successful completion of function

-1
BHERR_BHANDEXISTS
Attempt to initialize a second Bhand object

-2
BHERR_OPENCOMMPORT
Error opening the specified com port

-3
BHERR_GETCOMMSTATE
Could not read the state of the com port

-4
BHERR_SETCOMMSTATE
Could not set the state of the com port

-5
BHERR_SETCOMMTIMEOUT
Could not set the com port timeout parameters

-6
BHERR_THREADSTART
Could not start the low-level thread

-7
BHERR_THREADPRIORITY
Error setting the thread priority

-8
BHERR_WRITECOM
Error writing to the com port (including timeout)

-9
BHERR_READCOM
Error reading from the com port (including timeout)

-10
BHERR_BADRESPONSE
Hand responded with an incorrect sequence of characters

-11
BHERR_CLEARBUFFER
Could not clear com port buffers

-12
BHERR_TIMEOUT
Request to low-level thread timed out

-13
BHERR_NOTCOMPLETED
Previous request not completed (in ASYNCNOW)

-14
BHERR_PENDING
Request is still being processed (normal in ASYNC mode)

-15
BHERR_NOTINITIALIZED
A BHand object is not initialized (with InitSoftware)

-16
BHERR_BADPARAMETER
The parameter code passed to Get is invalid

-17
BHERR_LONGSTRING
Send or receive string exceeds BH_MAXCHAR

-18
BHERR_OUTOFRANGE
The parameter is not within a valid range

-19
BHERR_MOTORINACTIVE
The motor is not activated

3.8 Version 1.0 Library Compatibility XE "Library:Older version"
This section describes source code compatibility with the previous Library, Version 1.0. It is possible to recompile existing programs with these changes:

· Remove #include "stdc.h" and #include "serial.h" if they exist.

· Add #include "BHand.h".

· Change the extension of the program file to be *.cpp.

All functions from version 1.0 have been implemented to call the corresponding functions in version 4.0. InitSoftware has been modified to silently allocate a BHand object (pointed to by the global variable BHand* _pBh). All other functions use that object to translate calls to the hand. Calling a Version 1.0 function without first calling InitSoftware, returns with error BHERR_NOTINITIALIZED.

The functions in this group are:

int
Open(char motor);

int
Close(char motor);

int
StepOpen(char motor, int value);

int
StepClose(char motor, int value);

int
GoToPosition(char motor, int value);

int
GoToDifferentPositions(int value1, int value2, int value3, int value4);

int
GoToHome(void);

int
StopMotor(char motor);

int
Set(char motor, char parameter, int value);

int
Get(char motor, char parameter, int* result);

int
Save(char motor);

int
Load(char motor);

int
Default(char motor);

int
Temperature(int* result);

int
InitSoftware(void);

int
InitHand(void);

They behave exactly as in Version 1.0 of the Library. Here we only describe the differences between these functions and their equivalents in the 4.0 Library:

· The Get and Set functions accept a character flag for the parameter, which is internally translated into a string holding the new parameter name (some of the parameter flags have changed with the new firmware). The possible flags are the same as in Version 1.0.

· The InitSoftware function does not accept any parameters – the Library is always initialized to use COM1, highest low-level thread priority, baud rate 9600, default communication port timeouts, infinite request timeout, synchronous mode and no callback function.

Note: Barrett Technology does not recommend mixing version 1.0 and 4.0 function calls. If you call InitSoftware() initializing the 1.0 Library commands, you should use the Version 1.0 function calls. If you want to call some of the more advanced functions from 4.0, use the global pointer to the internally allocated BHand object. Here is an example of using old code and calling new version 4.0 commands:

#include <BHand.h>

void main()

{

InitSoftware();

InitHand();

_pBh->Baud(19200);

Close(‘G’);

}

Initializing the 4.0 Library and using 1.0 function calls is not possible. In general, we recommend modifying existing code to use the 4.0 function format.

4 Example Programs

4.1 Supervisory Mode XE "Supervisory Mode" Example: Supervisory.cpp
The following program was generated by the BHControl Interface. This code is an example of how to use the Supervisory Mode to control finger motions. This code closes the Spread and then the fingers in the sequence F1, F3 and then F2. The fingers then open in the opposite sequence F2, F3 and then F1 and terminate control of the Spread motor. A copy of this source code (Supervisory.cpp), the executable (Supervisory.exe) and the Supervisory control parameters used in the BHControl Interface XE "BHControl Interface" (Supervisory.bh) are included.

///

// //

// Automatically Generated C++ Code //

// BHand Control Center Version 1.0 //

// //

// Supervisory Mode //

// //

///

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <conio.h>

#include "BHand.h"

BHand bh; // Handles all hand communication

int value; // Hand parameter obtained with Get

int result; // Return value (error) of all BHand calls

///

// Error Handler - called whenever result!=0

// Feel free to customize this function

void Error(void)

{

printf("ERROR: %d\n%s\n", result, bh.ErrorMessage(result));

exit(0);

}

///

// Initialize hand, set timeouts and baud rate

void Initialize(void)

{

if(result=bh.InitSoftware(1,THREAD_PRIORITY_TIME_CRITICAL))

Error();

if(result=bh.ComSetTimeouts(0,100,15000,100,5000))

Error();

if(result=bh.Baud(9600))

Error();

if(result=bh.InitHand(""))

Error();

}

///

// Execute commands, return 1 if interrupted with a key

int Execute(void)

{

printf("Press Any Key to Abort...");

if(result=bh.Close("S"))

Error();

if(_kbhit())

{ _getch(); return 1; }

if(result=bh.Close("1"))

Error();

if(_kbhit())

{ _getch(); return 1; }

if(result=bh.Close("3"))

Error();

if(_kbhit())

{ _getch(); return 1; }

if(result=bh.Close("2"))

Error();

if(_kbhit())

{ _getch(); return 1; }

if(result=bh.Open("2"))

Error();

if(_kbhit())

{ _getch(); return 1; }

if(result=bh.Open("3"))

Error();

if(_kbhit())

{ _getch(); return 1; }

if(result=bh.Open("1"))

Error();

if(_kbhit())

{ _getch(); return 1; }

if(result=bh.StopMotor("S"))

Error();

if(_kbhit())

{ _getch(); return 1; }

return 0;

}

///

// Main function - initialize, execute

void main(void)

{

printf("Initialization...");

Initialize();

printf(" Done\n");

printf("Executing - ");

Execute();

printf(" Done\n");

}

4.2 RealTime Mode XE "RealTime Mode" Example: RealTime.cpp
The following program was generated by the BHControl Interface. This code is an example of how to use the RealTime Mode to control finger velocities as a function of time. Each of the fingers moves in a sinusoidal motion with a phase shift from the other fingers. A copy of this source code (RealTime.cpp), the executable (RealTime.exe) and the RealTime parameters used in the BHControl Interface XE "BHControl Interface" (RealTime.rt) are included. This program saves all of the feedback and control data to a file which may be read.

///

// //

// Automatically Generated C++ Code //

// BHand Control Center Version 1.0 //

// //

// RealTime Mode //

// //

///

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <conio.h>

#include "BHand.h"

BHand bh; // Handles all hand communication

int value; // Hand parameter obtained with Get

int result; // Return value (error) of all BHand calls

int szbuffer; // Size of data buffers

int* pdata[4][8]; // Pointers to data buffers

///

// Error Handler - called whenever result!=0

// Feel free to customize this function

void Error(void)

{

printf("ERROR: %d\n%s\n", result, bh.ErrorMessage(result));

exit(0);

}

///

// Initialize hand, set timeouts and baud rate

void Initialize(void)

{

if(result=bh.InitSoftware(1,THREAD_PRIORITY_TIME_CRITICAL))

Error();

if(result=bh.ComSetTimeouts(0,100,15000,100,5000))

Error();

if(result=bh.Baud(9600))

Error();

if(result=bh.InitHand(""))

Error();

}

///

// Execute commands, return 1 if interrupted with a key

int Before(void)

{

printf("Press Any Key to Abort...");

if(result=bh.Command("sc"))

Error();

if(_kbhit())

{ _getch(); return 1; }

if(result=bh.Command("go"))

Error();

if(_kbhit())

{ _getch(); return 1; }

return 0;

}

///

// Set parameters, allocate data buffers, load files

void PrepareRealTime(void)

{

szbuffer = 1000;

for(int m=0; m<4; m++)

for(int v=0; v<8; v++)

{

pdata[m][v] = new int[szbuffer];

memset((void*)pdata[m][v], 0, szbuffer*sizeof(int));

}

if(result=bh.RTSetFlags("123", 1, 1, 0, 0, 1, 0, 1, 0, 1))

Error();

}

///

// Run RealRime loop, return 1 if interrupted with a key

int RunRealTime(void)

{

double var[4][7];

int N=0;

DWORD time, tmstart;

bool terminate=false;

int pos, m;

bh.RTStart("123");

tmstart = GetTickCount();

bh.RTUpdate();

printf("Press Any Key to Abort...");

while(!terminate && !_kbhit())

{

time = GetTickCount() - tmstart;

pos = N%szbuffer;

for(m=0; m<4; m++)

{

pdata[m][0][pos] = bh.RTGetPosition(m+'1');

pdata[m][1][pos] = bh.RTGetVelocity(m+'1');

pdata[m][2][pos] = bh.RTGetStrain(m+'1');

pdata[m][3][pos] = bh.RTGetDeltaPos(m+'1');

pdata[m][5][pos] = (int)time;

}

pos = (N+1)%szbuffer;

for(int m=0; m<4; m++)

{

var[m][0] = bh.RTGetPosition(m+'1');

var[m][1] = bh.RTGetVelocity(m+'1');

var[m][2] = bh.RTGetStrain(m+'1');

var[m][3] = bh.RTGetDeltaPos(m+'1');

var[m][4] = pdata[m][4][N%szbuffer];

var[m][5] = (double)time;

var[m][6] = (double)N;

}

value = (int)((65.00) * (sin(((var[0][5]) / (3000.00)) * ((2.00) * (3.14)))));

bh.RTSetVelocity('1', value);

pdata[0][6][pos] = value;

value = (int)((65.00) * (sin((((var[1][5]) / (3000.00)) * ((2.00) * (3.14))) - (3.14))));

bh.RTSetVelocity('2', value);

pdata[1][6][pos] = value;

value = (int)((65.00) * (sin((((var[2][5]) / (3000.00)) * ((2.00) * (3.14))) - ((3.14) / (2.00)))));

bh.RTSetVelocity('3', value);

pdata[2][6][pos] = value;

terminate = (0<(int)((var[0][5]) > (10000.00)));

N++;

bh.RTUpdate();

}

bh.RTAbort();

if(_kbhit())

{ _getch(); return 1; }

else

return 0;

}

///

// Execute commands, return 1 if interrupted with a key

int After(void)

{

printf("Press Any Key to Abort...");

if(result=bh.Command("t"))

Error();

if(_kbhit())

{ _getch(); return 1; }

return 0;

}

///

// Save all buffers into a text file

void SaveData(char* name)

{

FILE* fp = fopen(name, "wt");

if(!fp)

return;

for(int r=0; r<szbuffer; r++)

{

for(int v=0; v<8; v++)

{

for(int m=0; m<4; m++)

fprintf(fp, "%d ", pdata[m][v][r]);

fprintf(fp, " ");

}

fprintf(fp, "\n");

}

fclose(fp);

}

///

// Main function - initialize, execute

void main(void)

{

printf("Initialization...");

Initialize();

printf(" Done\n");

printf("Before - ");

if(Before())

return;

printf(" Done\n");

PrepareRealTime();

printf("RealTime Loop - ");

if(RunRealTime())

return;

printf(" Done\n");

SaveData("Sinewave");

}

Appendix A Bhand.h

///

//

//

(C) Barrett Technology Inc. 1998

//

Written Emanuel Todorov, 12/1998

//

//
Header file for version 2.0 and 3.0 of the BHand C++ library.

//
"BHand.h" must be included in the user program, and "BHand.lib"

//
must be linked to the project.

//

///

#ifndef _INCLUDE_BHAND_H_JUST_ONCE_

#define _INCLUDE_BHAND_H_JUST_ONCE_

#include <windows.h>

// callback function type

typedef
void (*BHCallback)(class BHand*);

// char buffer size

#define BH_MAXCHAR

5000

// Software Library Error Messages (hand errors are positive)

#define BHERR_BHANDEXISTS

-1

#define BHERR_OPENCOMMPORT

-2

#define BHERR_GETCOMMSTATE

-3

#define BHERR_SETCOMMSTATE

-4

#define BHERR_SETCOMMTIMEOUT
-5

#define BHERR_THREADSTART

-6

#define BHERR_THREADPRIORITY
-7

#define BHERR_WRITECOM

-8

#define BHERR_READCOM

-9

#define BHERR_BADRESPONSE

-10

#define BHERR_CLEARBUFFER

-11

#define BHERR_TIMEOUT

-12

#define BHERR_NOTCOMPLETED

-13

#define BHERR_PENDING

-14

#define BHERR_NOTINITIALIZED
-15

#define BHERR_BADPARAMETER

-16

#define BHERR_LONGSTRING

-17

#define BHERR_OUTOFRANGE

-18

#define BHERR_MOTORINACTIVE

-19

// Requests to Communications Thread

#define BHREQ_EXIT

1

#define BHREQ_REALTIME

2

#define BHREQ_SUPERVISE

3

#define BHREQ_CLEAR

4

// Synchronization Modes

#define BHMODE_SYNC

1

#define BHMODE_ASYNCNOW

2

#define BHMODE_ASYNCWAIT

3

#define BHMODE_RETURN

4

///

// Class BHand declaration

class BHand

{

friend DWORD _stdcall _ComThreadFunction(void* pHand);

public:

BHand() {};

~BHand();

const char* ErrorMessage(int err);

//

// Serial communications

int
ComInitialize(unsigned char comport, int priority);

int
ComSetTimeouts(DWORD readInterval, DWORD readMultiplier, DWORD readConstant, DWORD writeMultiplier, DWORD writeConstant);

int
ComSetBaudrate(DWORD baud);

int
ComRequest(int requestNumber);

bool
ComIsPending(void);

int
ComWaitForCompletion(DWORD timeout);

bool
ComClear(void);

int
ComRead(char* buffer, int size, HANDLE serial=0);

int
ComWrite(char* buffer, int size, HANDLE serial=0);

int
syncMode;

DWORD
requestTimeout;

BHCallback
pCallback;

//

// Interactive commands from version 1.0

int
Open(char* motor);

int
Close(char* motor);

int
StepOpen(char* motor, int value);

int
StepClose(char* motor, int value);

int
GoToPosition(char* motor, int value);

int
GoToDifferentPositions(int value1, int value2, int value3, int value4);

int
GoToHome(void);

int
StopMotor(char* motor);

int
Set(char* motor, char* parameter, int value);

int
Get(char* motor, char* parameter, int* result);

int
Save(char* motor);

int
Load(char* motor);

int
Default(char* motor);

int
Temperature(int* result);

int
InitSoftware(int port, int priority = THREAD_PRIORITY_TIME_CRITICAL);

int
InitHand(char* motor);

//

// New interactive commands

int
Delay(DWORD msec);

int
GoToDefault(char* motor);

int
Reset(void);

int
Baud(DWORD baud);

int
Command(char* send, char* receive=NULL);

const char*
Response(void);

const char*
Buffer(void);

//

// Real-time (loop) mode commands

int
RTStart(char* motor);

int
RTUpdate(bool control=true, bool feedback=true);

int
RTSetFlags(char* motor, bool LCV, int LCVC, bool LCPG,bool LFV, int LFVC, bool LFS, bool LFAP, bool LFDP, int LFDPC);

int
RTAbort(void);

char
RTGetVelocity(char motor);

unsigned char
RTGetStrain(char motor);

int
RTGetPosition(char motor);

char
RTGetDeltaPos(char motor);

int
RTSetVelocity(char motor, int velocity);

int
RTSetGain(char motor, int gain);

int
rtFlags[4][7];

int
nSend;

int
nReceive;

char
rtIn[20];

//

// Internal variables - not accessible by the user program

private:

HANDLE
com;

HANDLE
thread;

DWORD
threadId;

int
request;

HANDLE
requestPending;

HANDLE
requestComplete;

DWORD
requestBaud;

char
inbuf[BH_MAXCHAR];

int
nin;

char
outbuf[BH_MAXCHAR];

int
nout;

int
comErr;

char
rtOut[8];

int
rtControl[4][2];

int
rtFeedback[4][4];

};

// Indicates that the ONLY BHand object has been initialized

extern bool _BHInitialized;

// Obsolete fuctions provided for version 1.0 compatibility

int
Open(char motor);

int
Close(char motor);

int
StepOpen(char motor, int value);

int
StepClose(char motor, int value);

int
GoToPosition(char motor, int value);

int
GoToDifferentPositions(int value1, int value2, int value3, int value4);

int
GoToHome(void);

int
StopMotor(char motor);

int
Set(char motor, char parameter, int value);

int
Get(char motor, char parameter, int* result);

int
Save(char motor);

int
Load(char motor);

int
Default(char motor);

int
Temperature(int* result);

int
InitSoftware(void);

int
InitHand(void);

// pointer to dynamically allocated hand for vers 1.0 compatibility

extern BHand* _pBH;

#endif

INDEX

A
Acceleration
10

Acceleration conversion
11

API
8, 41

ASCII
6, 14

Asynchronous
4, 6, 24, 48

B
Backdrivable
28, 50

Baud rate
12, 20, 21, 23, 29, 41, 43

BHand
3, 8, 12, 31, 46

BHControl Interface
59, 62

Buffers
6, 12, 24, 40, 42, 43, 46

C
Callback function
5, 47

Communication mode

BHMODE_ASYNCHNOW
48

BHMODE_ASYNCHWAIT
48

BHMODE_SYNCH
48

Communication port
41

Initialization
6

Read
6

Write
6

Commutation
20

D
Delay
15

Delays
4

E
EEPROM
15, 22, 24

F
Firmware
3

Firmware parameters

ACCEL
10, 16, 25, 49

BAUD
16, 25, 49

DP
16, 17, 25, 49

DS
16, 25, 26, 27, 49

EN
16, 25, 49

FDZ
10, 16, 25, 50

FIP
10, 16, 25, 50

FPG
10, 16, 25, 50

HOLD
16, 25, 50

LCPG
16, 25, 29, 30, 35, 50

LCV
16, 25, 29, 30, 35, 51

LCVC
16, 25, 29, 30, 35, 51

LFAP
16, 25, 29, 30, 35, 51

LFDP
16, 25, 29, 30, 35, 51

LFDPC
16, 25, 29, 30, 32, 35, 51

LFS
16, 25, 29, 30, 35, 52

LFV
16, 25, 29, 30, 35, 52

LFVC
16, 25, 29, 30, 35, 52

MCV
11, 16, 25, 52

MOV
11, 16, 25, 52

MPE
10, 16, 25, 53

MSG
16, 25, 53

P

16, 53

S

16, 53

SG
16, 53

SGFLIP
16, 25, 54

TEMP
54

TSTOP
10, 16, 25, 54

H
High-level
4, 6, 9

I
Initialization

BarrettHand
6

Software
5

Installation
8

Intermediate-level
4, 5

L
Library

Older version
57

Low-level
4, 5

M
Maximum velocity
10

Motors

Control
6, 9

Parameters
6

Multithreading
3, 5

P
Proportional gain
9, 36

R
RealTime Mode
6, 29, 62

RealTime Mode commands

RTAbort
30, 31

RTGetDeltaPos
30, 32

RTGetPosition
30, 33

RTGetStrain
30, 33

RTGetVelocity
30, 34

RTSetFlags
30, 35

RTSetGain
30, 36

RTSetVelocity
30, 37

RTStart
30, 38

RTUpdate
30, 36, 37, 39

Request type

BHREQ_CLEAR
5, 43

BHREQ_EXIT
5, 43

BHREQ_REALTIME
5, 43

BHREQ_SUPERVISE
5, 43

S
Sample time
9, 11

Serial Communication functions

ComClear
40, 43

ComInitialize
41

ComIsPending
7, 42

ComRead
42

ComRequest
43

ComSetBaudrate
43

ComSetTimeouts
5, 6, 44

ComWaitForCompletion
7, 45

ComWrite
46

Serial port
21, 41

Serial port timeout parameters
5, 6, 41, 46

readConstant
44

readInterval
44

readMultiplier
44

writeConstant
44

writeMultiplier
44

Status codes
5, 9, 55

Hand
55

Library
56

Supervisory Mode
9, 59

Supervisory Mode commands

Baud
12, 43

Buffer
12

Close
9, 13, 26

Command
14

Default
15

Delay
15

Get
16, 17

GoToDefault
10, 17

GoToDifferentPositions
10, 18

GoToHome
18

GoToPosition
10, 19

InitHand
12, 20, 21, 23

InitSoftware
21

Load
22, 24

Open
9, 23

Reset
23

Response
24

Save
15, 24

Set
25, 35

StepClose
10

StepOpen
10, 27

StopMotor
28

Temperature
28

Synchronous
4, 6, 47, 48

T
Temperature
6, 28, 54

Thread priority
4, 5, 21, 41

TorqueSwitch™
13, 23

Trapezoidal Profile control
10

V
Variables

_BHInitialized
46

pCallback
5, 6, 21, 47

requestTimeout
6, 21, 47

syncMode
6, 21, 48

Velocity control
9, 10

Velocity conversion
9

Velocity error
9

W
Windows event objects

requestComplete
5

requestPending
5

Integer

Fraction

Fraction

Integer

� Encoder feedback from two channels measures four times the number of motor positions to actual lines on the encoder.

PAGE
July 15, 1999

version 1.0

_992089769.unknown

_993562773.unknown

_992090811.unknown

_991827390.unknown

