CAN Message Format
This document describes the CAN message format used in Barrett products.

Data Link Specifications

1Mbaud CANbus

8 time quanta per bit

75% sampling point

Sync jump width = 1 time quanta (TQ)

11-bit MsgID (standard CAN)

Proprietary protocol, not compatible with DeviceNet or CANopen
Recommended reading: Controller Area Network by Konrad Etschberger

CANbus Timing

75uS to ask for position

75uS per puck to respond with the positions
Control-side processing time on PC

125pS to send a packed torque to the lower 4DOF
125uS to send a packed torque to the wrist

For the 4-DOF WAM, it is: 75+ (4*75)+PC+125 = 500uS + PC
For the 7-DOF WAM, it is: 75+ (7*75)+PC+(2*125) = 850uS + PC

These numbers are limited by the 1 Mbps CANbus. Each message has a 47-bit frame (47uS), plus
payload data (3 bytes, 24uS typ).

CANbus transceivers are not rated above 1 Mbps due to slew-rate limitations.

Raw CAN frame

SOF MSGID RTR S/E R DLC DO CRC DLM ACK DLM EOF INT
0 10000000100 O 0O O 0001 00001001 XXXXXXXXXXXXXXX 1 X 1 1111111 111

/*
0 = Dominant
1 = Recessive

NOTE

SOF = Start of Frame Always zero
MSGID = 11-bit Message Identifier User-supplied
RTR = Remote Transmit Request Always zero
S/E = Select standard(0)/extended(l) frame Always zero
R = Reserved bit Always zero
DLC = Data Length Code Valid values: 0-8 (bytes of data payload)
DO = Data payload, first byte Payload can be from zero to 8 bytes long
CRC = 15-bit Cyclic Redundancy Check field Calculated by hardware/driver
DIM = Delimiter 1-bit recessive, handled by hardware
ACK = Acknowledgement slot 0 = ACK, 1 = NACK, handled by hardware
EOF = 7-bit End of Frame Handled by hardware/driver
INT = 3-bit Intermission field Handled by hardware/driver
47-bit minimum frame size (plus 0-8 8-bit bytes of data payload)

*

/

Copyright © 2012, Barrett Technology Page 1 Updated: April 3, 2012

Barrett MSGID

GRP FROM TO
G FFFFF TTTTT

00000 00100

1

/*

*/

Every CAN node has 4 mailboxes.
addressed directly to that node's ID.

[

Group flag. If 'l', then interpret
5-bit 'From' address
S5-bit 'To' address (or

example above is interpreted as,

GroupID defaults:
0

this MSGID on the CAN bus: “0

a non-group message,
configured to receive group broadcast messages.

named GRPA, GRPB, and GRPC.

from ID O

GroupID)

00000 000117,
(control PC)

Example configuration for WAM puck ID 3:

MBX
1 Primary, receive messages directed to my ID (=3)
2 GRPA = 0, receive messages broadcast to GroupID 0
3 GRPB = 1, receive messages broadcast to GroupID 1
4 GRPC = 4, receive messages broadcast to GroupID 4
Example configuration for WAM Safety Board (ID 10):
MBX
1 Primary, receive messages directed to my ID (=10)
2 GRPA = 1, receive messages broadcast to GroupID 1
3 GRPB = 2, receive messages broadcast to GroupID 2
4 GRPC = 3, receive messages broadcast to GroupID 3

Copyright © 2012, Barrett Technology

lTol

For example,

’

“From node ID 0,

packed

= All pucks (except safety puck)
1 = 4DOF torques, packed (nodes 1-4)
2 = Wrist torques, packed (nodes 5-7)
3 = Position feedback (P), packed
4 = Whole WAM (nodes 1-7)
5 = Whole BHand (nodes 11-14)
6 = Property feedback (non-position)
7 = Secondary encoder feedback (JP),
8 = Tactile ToplO data
9 = Tactile Full data
0 = F/T Sensor, force data
1 = F/T Sensor, torque data

as GrouplID

to GrouplD 4”

The primary mailbox always receives messages that are
if my ID is 3 and I hear a message with

I will receive and process that message. This is
(me) . The other 3 mailboxes can be

Page 2

to ID 3

(all waM
(receive
(receive

(receive
(receive
(receive

Their associated configuration properties are

pucks)
4DOF packed data)
WAM broadcast properties)

4DOF packed torques)
Wrist packed torques)
packed positions)

Updated: April 3, 2012

Barrett Data Payload
CAN specifies a maximum of 8 bytes/frame payload - our typical payload consists of 4-6 bytes:
[RPPPPPPP] [00000000] [LLLLLLLL] [mmmmmmmm] [MMMMMMMM] [HHHHHHHH]
R: Request, 0 = Get property, 1 = Set property
P: Property (128 possible values, 0..127, 0000000..1111111)
For a list of Properties, see:
http://web.barrett.com/support/Puck Documentation/PuckProperties.pdf
http://web.barrett.com/support/ForceTorque Documentation/ForceTorqueProperties.doc
0: Second byte (almost) always set to zero (see exceptions below)
L: Low byte of data wvalue
m: mid-low byte of data value

If sending a 32-bit integer value, the following are used:
M: Mid-high byte of data wvalue
H: High byte of data value

Exceptions

PACKED POSITION FEEDBACK

22-bit packed position, only sent from pucks in response to a Get Position (P/JP) command:
MSGID DLC DO D1 D2

10011000011 0011 [1O0MMMMMM] [mmmmmmmm] [LLLLLLLL]

This example is from puck ID 6, to GroupID 3.

Dual 22-bit packed positions, only sent from pucks having both a motor and a secondary
encoder, in response to a Get Position (P):

MSGID DLC DO D1 D2 D3 D4 D5
10011000011 0011 [1OMMMMMM] [mmmmmmmm] [LLLLLLLL] [10MMMMMM] [mmmmmmmm] [LLLLLLLL]
This example is from puck ID 6, to GroupID 3. First 3 bytes are P, last three are JP.

4 * 14-bit packed values:

DO D1 D2 D3 D4 D5 D6 D7
[0x80 | prop] [AAAAARaa] [aaaaaaBB] [BBBBbbbb] [bbbbCCCC] [Ccccccee] [ccDDDDDD] [dddddddd]
Note: Each puck’s PIDX property governs which of the 4 packed values is used. PIDX = [1..4]

Note: Must be sent from host (from ID = 0)
FORCE/TORQUE SENSOR FEEDBACK

Reading property 'FT' from the F/T sensor will generate 2 CAN frames:

MSGID DLC DO D1 D2 D3 D4 D5
10100001010 0110 [aaaaaaaal] [AAAAAAAA] [bbbbbbbb] [BBBBBBBB] [cccccceccce] [CCCCCCCC]
10100001011 0110 [dddddddd] [DDDDdddd] [eeeeceeee] [EEEEeeee] [ffffffff] [FFFFEfff]

AAAAAARAaaaaaaaa = 16-bit force in X, divide by 256 to get N

BBBBBBBBbbbbbbbb = 16-bit force in Y, divide by 256 to get N

CCCCCCCCccccececeec = 16-bit force in Z, divide by 256 to get N

DDDDdddddddddddd = 16-bit torque about X, divide by 4096 to get Nm

EEEEeeeeeeeeeeee = 16-bit torque about Y, divide by 4096 to get Nm

FFFFELEEfffEf£fff = 16-bit torque about Z, divide by 4096 to get Nm
If any of the F/T sensor’s strain gages have been saturated since the last Tare command, a
7th byte will be appended to the torque frame in the format: D6 = [RBGGGGGG]
R: Re-tare suggested (always ‘1’ when this byte is present)
B: Bad data present (if ‘'1’, then force and torque data should be discarded)
GGGGGG: Latched saturated gage flags.
Example: D6 = [11001001] means “The force and torque data should be discarded because either
gage 1 or gage 4 is presently saturated. Gages 1 and 4 have experienced saturation since the
last Tare command. A re-tare is suggested.”
This extra byte will be dropped from the torque frame after the next Tare command.

Reading property 'A' from the F/T sensor will generate the following CAN frame:
MSGID DLC DO D1 D2 D3 D4 D5
10100001100 0110 [aaaaaaaal] [AAAAAAAA] [bbbbbbbb] [BBBBBBBB] [cccccceccce] [CCCCCCCC]
AAAAAAAAaaaaaaaa = l6-bit acceleration in X, divide by 1024 to get m/s™2
BBBBBBBBbbbbbbbb = 16-bit acceleration in Y, divide by 1024 to get m/s”2
CCCCCCCCcccecccce = 16-bit acceleration in Z, divide by 1024 to get m/s™2

Copyright © 2012, Barrett Technology Page 3 Updated: April 3, 2012

TACTILE SENSOR FEEDBACK

Tactile ToplO (generated after “SET TACT = 1” or “GET TACT” when TACT == 1)
[HighSSsSs] [Mid SSSS] [Low SSSS] [AAAABBBB] [CCCCDDDD] [EEEEFFFF] [GGGGHHHH] [JJJJKKKK]
SSSS 24-bit sensor map, exactly 10 bits will be '1l', the rest '0'
AADAA 4-bit value of the lowest sensor ID in the map (N/cm2)
BBBB = 4-bit value of the next lowest sensor ID in the map (N/cm2)

ToplO Example:

24 17 16...... 9 8...... 1 AAAABBBB CCCCDDDD EEEEFFFF GGGGHHHH JJJJKKKK
[10011000] [00111010] [10000011] [01100100] [01011110] [01110111] [10110110] [10010011]
Sensors 1, 2, 8, 10, 12, 13, 14, 20, 21, and 24 are reporting the highest pressures.
The pressures are, respectively: 6, 4, 5, 14, 7, 7, 11, 6, 9, 3 (N/cm2)

Tactile Full (generated after “SET TACT = 2” or “GET TACT” when TACT == 2)

5 messages are generated in the form:
[NNNNAAAA] [aaaaaaaa] [BBBBbbbb] [bbbbCCCC] [ccccccce] [DDDDAdAdAd] [dAddEEEE] [eeeeeeee]
NNNN = 4-bit sensor group: 0 = sensors 1-5, 1 = sensors 6-10, etc.
AAMAaaaaaaaa = 12-bit sensor data from first sensor in group, divide by 256 to get N/cm2
BBBBbbbbbbbb = 12-bit sensor data from second sensor in group, divide by 256 to get N/cm2

Copyright © 2012, Barrett Technology Page 4 Updated: April 3, 2012

Example messages for a WAM

MSGID DLC DO
RPPPPPPP
00000000001 0001 00000101
0x0001 1 5
From PC, to ID 1, Len = 1, Get STAT
Read as: Hello Puck 1, this is the PC, what
MSGID DLC DO D1 D2
RPPPPPPP 00000000 LLLLLLLL
10000100110 0100 10000101 00000000 0OOOOO1O0
0x0426 4 0x80 | 5 0 2
From ID 1, to GrouplID 6, Len = 4, Set STAT

Read as:
Hello nodes listening to Groupé messages,

this is Puck 1,

is your STAT?

D3
mmmmmmmm
00000000

0

= 2
Non-position property feedback from a Puck is sent to GroupID 6

my STAT is 2

MSGID DLC DO D1 D2 D3 D4 D5
RPPPPPPP 00000000 LLLLLLLL mmmmmmmm MMMMMMMM HHHHHHHH
00000000001 0110 10110000 00000000 10000111 11010110 00010010 00OOOQOQOO
0x0001 6 0x80 | 48 0 0x87 0xD6 0x12 0x00
From PC, to ID 1, Len = 6, Set P = 1234567
MSGID DLC DO D1 D2 D3
RPPPPPPP 00000000 LLLLLLLL mmmmmmmm
00000000001 0100 10001000 00000000 00000010 00OOOOQOOO
0x0001 4 0x80 | 8 0 2 0
From PC, to ID 1, Len = 4, Set MODE = 2
MSGID DLC DO
RPPPPPPP
10000000000 0001 00110000
0x0400 1 48
From PC, to GroupID 0, Len = 1, Get motor positions
MSGID DLC DO D1 D2
10MMMMMM mmmmmmmm LLLLLLLL
10000100011 0011 10010010 11010110 10000111
0x423 3 0x12 0xD6 0x87
From ID 1, to GroupID 3, Len = 3, Packed position = 1234567
MSGID DLC DO D1 D2 D3 D4 D5

(see page 2).

[STATUS READY] .

D6 D7

RPPPPPPP AAAAAAaa aaaaaaBB BBBBbbbb bbbbCCCC Cccccccc ccDDDDDD dddddddd
10000000001 1000 10101010 0OOOOOOOO 010001171 1711171100 11100000 00010010 11211171121 10011100

From PC, to GroupID 1, Len = 8,

Copyright © 2012, Barrett Technology

Set 4DOF torques to

[17, -50, 75,

Page 5

-100]

Updated: April 3, 2012

Example messages for a BarrettHand

MSGID DLC DO D1 D2 D3

RPPPPPPP 00000000 LLLLLLLL mmmmmmumm
10000000101 0100 10011101 00000000 00001101 00000000
0x0405 4 29 0 13 0

From PC, to Group 5 (BHand, nodes 11-14), Len = 4, Set CMD (Prop #29) to 13 (CMD_HI)

For a list of possible CMD values, see:
http://web.barrett.com/support/Puck Documentation/PuckCommandList.doc

MSGID DLC DO D1 D2 D3
RPPPPPPP 00000000 LLLLLLLL mmmmmmmm
00000001100 0100 10011101 00000000 00010010 00000000
4 0x80 | 29 0 18 0

From PC, to Puck 12, Len = 4, Set CMD (Prop #29) to 18 (CMD CLOSE), Close finger 2

MSGID DLC DO D1 D2 D3
RPPPPPPP 00000000 LLLLLLLL mmmmmmmn
00000001101 0100 10011101 00000000 00010100 00000000
4 0x80 | 29 0 20 0

From PC, to Puck 13, Len = 4, Set CMD (Prop #29) to 20 (CMD _OPEN), Open finger 3

MSGID DLC DO D1 D2 D3
RPPPPPPP 00000000 LLLLLLLL mmmmmmmn
00000001011 0100 10110100 00000000 00010000 00100111
4 0x80 | 52 0 10,000

From PC, to Puck 11, Len = 4, Set E (Prop #52) to 10,000
This sets the desired Endpoint position of finger 1 to 10,000 encoder cts.

MSGID DLC DO D1 D2 D3
RPPPPPPP 00000000 LLLLLLLL mmmmmmmm
00000001011 0100 10001000 00000000 00000101 00000000
4 0x80 | 8 0 5 0

From PC, to Puck 11, Len = 4, Set MODE (Prop #8) to 5 (Trapezoidal Mode)
This begins a trapezoidal profile move from the present position to the specified Endpoint.

**x* At this point, finger 1 will start to move. To determine when the move is complete,

x yvou may poll for the MODE of Node 11 (finger 1). When the MODE is no longer 5, the move
x ig complete. The recommended polling frequency for MODE is 10Hz.

**x* The following two messages represent typical communication when polling for MODE.

MSGID DLC DO
RPPPPPPP
00000001011 0001 00001000
1 8

From PC, to Puck 11, Len = 1, Get MODE (Prop #8)

MSGID DLC DO D1 D2 D3
RPPPPPPP 00000000 LLLLLLLL mmmmmmmn
10101100110 0100 10001000 00000000 00000101 00000000
4 0x80 | 8 0 5

From Puck 11, to GroupID 6, Len = 4, Return value of 5 for MODE (Prop #8)

MSGID DLC DO
RPPPPPPP
00000001100 0001 00011001
1 25

From PC, to Puck 12, Len = 1, Get SG (Prop #25)

MSGID DLC DO D1 D2 D3
RPPPPPPP 00000000 LLLLLLLL mmmmmmmn
10110000110 0100 10011001 00000000 11000101 00001001
4 0x80 | 25 0 2501

From Puck 12, to GroupID 6, Len = 4, Return value of 2501 for SG (Prop #25)

Copyright © 2012, Barrett Technology Page 6 Updated: April 3, 2012

MSGID DLC DO

RPPPPPPP
00000001100 0001 00110000
1 48

From PC, to Puck 12, Len = 1, Get P (Prop #48)

*** The message you receive in response will be a dual 22-bit packed position.

*** Nodes 11-13 (Fingers 1-3) will respond in this way because they have dual encoders.
x The first 3 bytes are P (motor encoder). The last three are JP (inner link encoder) .
*** The encoder-count to joint-angle conversion formulas can be found here:

**% http://support.barrett.com/wiki/Hand/280/KinematicsJointRangesConversionFactors

MSGID DLC DO D1 D2 D3 D4 D5
10MMMMMM mmmmmmmm LLLLLLLL 10MMMMMM mmmmmmmm LLLLLLLL
10110000011 0110 10000001 11101000 01001000 10000000 00111010 10011000
6
From Puck 12, to GroupID 3, Len = 6
Return value of 125000 for P (Prop #48) and 15000 for JP (Prop #96)

MSGID DLC DO
RPPPPPPP
00000001100 0001 01100000
1 96

From PC, to Puck 12, Len = 1, Get JP (Prop #96)
*** When asking for JP (Prop #96), the response will be a single 22-bit packed position.

MSGID DLC DO D1 D2
1 0MMMMMM mmmmmmmm LLLLLLLL
10110000111 0011 10000000 00111010 10011000
3 15000

From Puck 12, to GroupID 7, Len = 3
Return value of 15000 for JP (Prop #96)

MSGID DLC DO
RPPPPPPP
00000001110 0001 00001001
1 9

From PC, to Puck 14, Len = 1, Get TEMP (Prop #9)

MSGID DLC DO D1 D2 D3
RPPPPPPP 00000000 LLLLLLLL mmmmmmmm
10111000110 0100 10001001 00000000 00100011 00000000
4 0x80 | 9 0 35

From Puck 14, GroupID 6, Len = 4
Return value of 35 (degrees Celsius) for TEMP (Prop #9)

MSGID DLC DO D1 D2 D3
RPPPPPPP 00000000 LLLLLLLL mmmmmmmn
00000001011 0100 10110100 00000000 00110111 00000000
4 0x80 | 52 0 55 0

From PC, to Puck 11, Len = 4, Set V (Prop #44) to 55
Set the desired velocity of finger 1 to 55 encoder counts / ms

MSGID DLC DO D1 D2 D3
RPPPPPPP 00000000 LLLLLLLL mmmmmmumm
00000001011 0100 10001000 00000000 00000100 00000000
4 0x80 | 8 0 4 0

From PC, to Puck 11, Len = 4, Set MODE (Prop #8) to 4 (MODE VELOCITY)
Set the MODE of finger 1 to “velocity mode”

Copyright © 2012, Barrett Technology Page 7 Updated: April 3, 2012

